These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29373499)

  • 1. A Proposal for IoT Dynamic Routes Selection Based on Contextual Information.
    Araújo HDS; Filho RH; Rodrigues JJPC; Rabelo RAL; Sousa NC; Filho JCCLS; Sobral JVV
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29373499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Scalable Context-Aware Objective Function (SCAOF) of Routing Protocol for Agricultural Low-Power and Lossy Networks (RPAL).
    Chen Y; Chanet JP; Hou KM; Shi H; de Sousa G
    Sensors (Basel); 2015 Aug; 15(8):19507-40. PubMed ID: 26266411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LOADng-IoT: An Enhanced Routing Protocol for Internet of Things Applications over Low Power Networks.
    Sobral J; Rodrigues J; Rabelo R; Saleem K; Furtado V
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30609865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Routing Protocols for Low Power and Lossy Networks in Internet of Things Applications.
    Sobral JVV; Rodrigues JJPC; Rabêlo RAL; Al-Muhtadi J; Korotaev V
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31075837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CoAR: Congestion-Aware Routing Protocol for Low Power and Lossy Networks for IoT Applications.
    Bhandari KS; Hosen ASMS; Cho GH
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-RPL: Cluster Tree Based Routing Protocol to Maximize the Lifetime of Internet of Things.
    Sankar S; Ramasubbareddy S; Luhach AK; Nayyar A; Qureshi B
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33081218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy and Delay Aware Data Aggregation in Routing Protocol for Internet of Things.
    Sennan S; Balasubramaniyam S; Luhach AK; Ramasubbareddy S; Chilamkurti N; Nam Y
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sigma Routing Metric for RPL Protocol.
    Sanmartin P; Rojas A; Fernandez L; Avila K; Jabba D; Valle S
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application-Aware SDN-Based Iterative Reconfigurable Routing Protocol for Internet of Things (IoT).
    Shafique A; Cao G; Aslam M; Asad M; Ye D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Quality-of-Service-Aware Service Composition Method in the Internet of Things Using a Multi-Objective Fuzzy-Based Hybrid Algorithm.
    Hamzei M; Khandagh S; Jafari Navimipour N
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DYNASTI-Dynamic Multiple RPL Instances for Multiple IoT Applications in Smart City.
    Junior S; Riker A; Silvestre B; Moreira W; Oliveira-Jr A; Borges V
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trust and Mobility-Based Protocol for Secure Routing in Internet of Things.
    Muzammal SM; Murugesan RK; Jhanjhi NZ; Hossain MS; Yassine A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Trust-Based Model for Secure Routing against RPL Attacks in Internet of Things.
    Muzammal SM; Murugesan RK; Jhanjhi NZ; Humayun M; Ibrahim AO; Abdelmaboud A
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of 6LoWPAN Generic Header Compression in the Context of a RPL Network.
    Vandervelden T; Deac D; Van Glabbeek R; De Smet R; Braeken A; Steenhaut K
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optimized Probabilistic Delay Tolerant Network (DTN) Routing Protocol Based on Scheduling Mechanism for Internet of Things (IoT).
    Mao Y; Zhou C; Ling Y; Lloret J
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Consumption Evaluation of a Routing Protocol for Low-Power and Lossy Networks in Mesh Scenarios for Precision Agriculture.
    O Sales F; Marante Y; Vieira AB; Silva EF
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible computation offloading in a fuzzy-based mobile edge orchestrator for IoT applications.
    Nguyen V; Khanh TT; Nguyen TDT; Hong CS; Huh EN
    J Cloud Comput (Heidelb); 2020; 9(1):66. PubMed ID: 33532167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Void Hole Alleviation by Exploiting the Energy Efficient Path and by Providing the Interference-Free Proactive Routing Protocols in IoT Enabled Underwater WSNs.
    Awais M; Javaid N; Rehman A; Qasim U; Alhussein M; Aurangzeb K
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30884749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A routing protocol based on energy and link quality for Internet of Things applications.
    Machado K; Rosário D; Cerqueira E; Loureiro AA; Neto A; Souza JN
    Sensors (Basel); 2013 Feb; 13(2):1942-64. PubMed ID: 23385410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whisper: Programmable and Flexible Control on Industrial IoT Networks.
    Municio E; Marquez-Barja J; Latré S; Vissicchio S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.