These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 29374183)
41. Enzyme selection, optimization, and production toward biodegradation of post-consumer poly(ethylene terephthalate) at scale. Soong YV; Abid U; Chang AC; Ayafor C; Patel A; Qin J; Xu J; Lawton C; Wong HW; Sobkowicz MJ; Xie D Biotechnol J; 2023 Dec; 18(12):e2300119. PubMed ID: 37594123 [TBL] [Abstract][Full Text] [Related]
42. An engineered PET depolymerase to break down and recycle plastic bottles. Tournier V; Topham CM; Gilles A; David B; Folgoas C; Moya-Leclair E; Kamionka E; Desrousseaux ML; Texier H; Gavalda S; Cot M; Guémard E; Dalibey M; Nomme J; Cioci G; Barbe S; Chateau M; André I; Duquesne S; Marty A Nature; 2020 Apr; 580(7802):216-219. PubMed ID: 32269349 [TBL] [Abstract][Full Text] [Related]
43. Proteomic characterisation of polyethylene terephthalate and monomer degradation by Ideonella sakaiensis. Poulsen JS; Nielsen JL J Proteomics; 2023 May; 279():104888. PubMed ID: 36965770 [TBL] [Abstract][Full Text] [Related]
44. Concentration-Dependent Inhibition of Mesophilic PETases on Poly(ethylene terephthalate) Can Be Eliminated by Enzyme Engineering. Avilan L; Lichtenstein BR; König G; Zahn M; Allen MD; Oliveira L; Clark M; Bemmer V; Graham R; Austin HP; Dominick G; Johnson CW; Beckham GT; McGeehan JE; Pickford AR ChemSusChem; 2023 Apr; 16(8):e202202277. PubMed ID: 36811288 [TBL] [Abstract][Full Text] [Related]
45. Enhanced Extracellular Production of Shi L; Liu H; Gao S; Weng Y; Zhu L J Agric Food Chem; 2021 Feb; 69(7):2245-2252. PubMed ID: 33576230 [TBL] [Abstract][Full Text] [Related]
46. Novel Pet-Degrading Enzymes: Structure-Function from a Computational Perspective. Berselli A; Ramos MJ; Menziani MC Chembiochem; 2021 Jun; 22(12):2032-2050. PubMed ID: 33470503 [TBL] [Abstract][Full Text] [Related]
47. The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis. Wallace NE; Adams MC; Chafin AC; Jones DD; Tsui CL; Gruber TD Environ Microbiol Rep; 2020 Oct; 12(5):578-582. PubMed ID: 32783383 [TBL] [Abstract][Full Text] [Related]
48. A bacterium that degrades and assimilates poly(ethylene terephthalate). Yoshida S; Hiraga K; Takehana T; Taniguchi I; Yamaji H; Maeda Y; Toyohara K; Miyamoto K; Kimura Y; Oda K Science; 2016 Mar; 351(6278):1196-9. PubMed ID: 26965627 [TBL] [Abstract][Full Text] [Related]
49. Surface display as a functional screening platform for detecting enzymes active on PET. Heyde SAH; Arnling Bååth J; Westh P; Nørholm MHH; Jensen K Microb Cell Fact; 2021 May; 20(1):93. PubMed ID: 33933097 [TBL] [Abstract][Full Text] [Related]
50. Overexpression and kinetic analysis of Ideonella sakaiensis PETase for polyethylene terephthalate (PET) degradation. Aer L; Jiang Q; Gul I; Qi Z; Feng J; Tang L Environ Res; 2022 Sep; 212(Pt D):113472. PubMed ID: 35577005 [TBL] [Abstract][Full Text] [Related]
51. Exploring the Reaction Mechanism of Polyethylene Terephthalate Biodegradation through QM/MM Approach. Dos Santos AM; da Costa CHS; Silva PHA; Skaf MS; Lameira J J Phys Chem B; 2024 Aug; 128(31):7486-7499. PubMed ID: 39072475 [TBL] [Abstract][Full Text] [Related]
52. Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin. Chen Z; Duan R; Xiao Y; Wei Y; Zhang H; Sun X; Wang S; Cheng Y; Wang X; Tong S; Yao Y; Zhu C; Yang H; Wang Y; Wang Z Nat Commun; 2022 Nov; 13(1):7138. PubMed ID: 36414665 [TBL] [Abstract][Full Text] [Related]
53. Tailored expression of ICCM cutinase in engineered Escherichia coli for efficient polyethylene terephthalate hydrolysis. Ma HN; Hsiang CC; Ng IS Enzyme Microb Technol; 2024 Sep; 179():110476. PubMed ID: 38944965 [TBL] [Abstract][Full Text] [Related]
54. Discovery and characterization of two novel polyethylene terephthalate hydrolases: One from a bacterium identified in human feces and one from the Streptomyces genus. Han Z; Nina MRH; Zhang X; Huang H; Fan D; Bai Y J Hazard Mater; 2024 Jul; 472():134532. PubMed ID: 38749251 [TBL] [Abstract][Full Text] [Related]
55. Biodegradation of poly(ethylene terephthalate) through PETase surface-display: From function to structure. Han W; Zhang J; Chen Q; Xie Y; Zhang M; Qu J; Tan Y; Diao Y; Wang Y; Zhang Y J Hazard Mater; 2024 Jan; 461():132632. PubMed ID: 37804764 [TBL] [Abstract][Full Text] [Related]
56. Novel Feruloyl Esterase for the Degradation of Polyethylene Terephthalate (PET) Screened from the Gut Microbiome of Plastic-Degrading Mealworms ( Mamtimin T; Ouyang X; Wu WM; Zhou T; Hou X; Khan A; Liu P; Zhao YL; Tang H; Criddle CS; Han H; Li X Environ Sci Technol; 2024 Oct; 58(40):17717-17731. PubMed ID: 39315846 [TBL] [Abstract][Full Text] [Related]
57. Ancestral Sequence Reconstruction Identifies Structural Changes Underlying the Evolution of Joho Y; Vongsouthi V; Spence MA; Ton J; Gomez C; Tan LL; Kaczmarski JA; Caputo AT; Royan S; Jackson CJ; Ardevol A Biochemistry; 2023 Jan; 62(2):437-450. PubMed ID: 35951410 [TBL] [Abstract][Full Text] [Related]
58. [Advances in poly(ethylene terephthalate) hydrolases]. Zhao Z; Zhang G; Liu K; Li S Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):1998-2014. PubMed ID: 37212227 [TBL] [Abstract][Full Text] [Related]
59. Development of a yeast whole-cell biocatalyst for MHET conversion into terephthalic acid and ethylene glycol. Loll-Krippleber R; Sajtovich VA; Ferguson MW; Ho B; Burns AR; Payliss BJ; Bellissimo J; Peters S; Roy PJ; Wyatt HDM; Brown GW Microb Cell Fact; 2022 Dec; 21(1):280. PubMed ID: 36587193 [TBL] [Abstract][Full Text] [Related]
60. Degradation of PET microplastic particles to monomers in human serum by PETase. Lopez-Lorenzo X; Hueting D; Bosshard E; Syrén PO Faraday Discuss; 2024 Sep; 252(0):387-402. PubMed ID: 38864456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]