These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2937453)

  • 61. Transient state kinetic studies of phosphorylation by ATP and Pi of the calcium-dependent ATPase from sarcoplasmic reticulum.
    Vieyra A; Scofano HM; Guimarães-Motta H; Tume RK; de Meis L
    Biochim Biophys Acta; 1979 Jun; 568(2):437-45. PubMed ID: 158391
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Phosphorylation of the calcium adenosinetriphosphatase of sarcoplasmic reticulum: rate-limiting conformational change followed by rapid phosphoryl transfer.
    Petithory JR; Jencks WP
    Biochemistry; 1986 Aug; 25(16):4493-7. PubMed ID: 2945589
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Activation of sarcoplasmic reticulum Ca(2+)-ATPase by Mn2+: a Mn2+ binding study.
    Ogurusu T; Wakabayashi S; Shigekawa M
    J Biochem; 1991 Mar; 109(3):472-6. PubMed ID: 1831813
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ligand binding properties of the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase labelled with N-cyclohexyl-N'-(4-dimethylamino-alpha-naphthyl)carbodiimide.
    Chadwick CC; Thomas EW
    Biochim Biophys Acta; 1984 Jan; 769(2):291-6. PubMed ID: 6141803
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phosphorylation of the sarcoplasmic calcium-activated adenosinetriphosphatase as studied by 31P nuclear magnetic resonance.
    Sontheimer GM; Kalbitzer HR; Hasselbach W
    Biochemistry; 1987 May; 26(10):2701-6. PubMed ID: 2955808
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mechanism of allosteric regulation of the Ca,Mg-ATPase of sarcoplasmic reticulum: studies with 5'-adenylyl methylenediphosphate.
    Cable MB; Feher JJ; Briggs FN
    Biochemistry; 1985 Sep; 24(20):5612-9. PubMed ID: 2934090
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of the tryptophan fluorescence from sarcoplasmic reticulum adenosinetriphosphatase by frequency-domain fluorescence spectroscopy.
    Gryczynski I; Wiczk W; Inesi G; Squier T; Lakowicz JR
    Biochemistry; 1989 Apr; 28(8):3490-8. PubMed ID: 2525924
    [TBL] [Abstract][Full Text] [Related]  

  • 68. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.
    Han X; Huang Y; Zhang R; Xiao S; Zhu S; Qin N; Hong Z; Wei L; Feng J; Ren Y; Feng L; Wan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Aug; 165():155-160. PubMed ID: 27137358
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modification of arginine-198 in sarcoplasmic reticulum Ca2+-ATPase by 1,2-cyclohexanedione causes inhibition of formation of the phosphoenzyme intermediate from inorganic phosphate.
    Saino T; Daiho T; Kanazawa T
    J Biol Chem; 1997 Aug; 272(34):21142-50. PubMed ID: 9261119
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Conformational transitions in the calcium adenosinetriphosphatase studied by time-resolved fluorescence resonance energy transfer.
    Birmachu W; Nisswandt FL; Thomas DD
    Biochemistry; 1989 May; 28(9):3940-7. PubMed ID: 2526653
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sarcoplasmic reticulum ATPase phosphorylation from inorganic phosphate in the absence of a calcium gradient. Steady state and kinetic fluorescence studies.
    Lacapère JJ; Gingold MP; Champeil P; Guillain F
    J Biol Chem; 1981 Mar; 256(5):2302-6. PubMed ID: 6450766
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Solvent accessibility of the adenosine 5'-triphosphate catalytic site of sarcoplasmic reticulum CaATPase.
    Highsmith S
    Biochemistry; 1986 Mar; 25(5):1049-54. PubMed ID: 2938622
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phosphorus-31 nuclear magnetic resonance of phosphoenzymes of sodium- and potassium-activated and of calcium-activated adenosinetriphosphatase.
    Fossel ET; Post RL; O'Hara DS; Smith TW
    Biochemistry; 1981 Dec; 20(25):7215-9. PubMed ID: 6274392
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sarcoplasmic reticulum adenosinetriphosphatase phosphorylation from inorganic phosphate. Theoretical and experimental reinvestigation.
    Guillain F; Champeil P; Boyer PD
    Biochemistry; 1984 Sep; 23(20):4754-61. PubMed ID: 6238621
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural studies of a stabilized phosphoenzyme intermediate of Ca2+-ATPase.
    Stokes DL; Delavoie F; Rice WJ; Champeil P; McIntosh DB; Lacapère JJ
    J Biol Chem; 2005 May; 280(18):18063-72. PubMed ID: 15734741
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phosphorylation of calcium adenosinetriphosphatase by inorganic phosphate: van't Hoff analysis of enthalpy changes.
    Martin DW; Tanford C
    Biochemistry; 1981 Aug; 20(16):4597-602. PubMed ID: 6457627
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Correlation of intrinsic fluorescence and oxygen-exchange measurements of phosphorylation of sarcoplasmic reticulum ATPase from inorganic phosphate.
    Guillain FP; Boyer PD
    Ann N Y Acad Sci; 1982; 402():566-8. PubMed ID: 6220657
    [No Abstract]   [Full Text] [Related]  

  • 78. Arsenate-induced fluorescence changes in the Ca(2+)-ATPase of sarcoplasmic reticulum membranes.
    Alves EW
    Arch Biochem Biophys; 1992 Feb; 292(2):613-6. PubMed ID: 1731624
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A fluorescence investigation of the nucleotide binding sites of the Ca ATPase.
    White TE; Dewey TG
    Membr Biochem; 1987; 7(1):67-72. PubMed ID: 2963204
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Conformational changes of the nucleotide site of the plasma membrane Ca2+-ATPase probed by fluorescence quenching.
    Fonseca MM; Scofano HM; Carvalho-Alves PC; Barrabin H; Mignaco JA
    Biochemistry; 2002 Jun; 41(23):7483-9. PubMed ID: 12044182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.