These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1178 related articles for article (PubMed ID: 29374661)
1. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. Mao Q; Jay M; Hoffman JL; Calvert J; Barton C; Shimabukuro D; Shieh L; Chettipally U; Fletcher G; Kerem Y; Zhou Y; Das R BMJ Open; 2018 Jan; 8(1):e017833. PubMed ID: 29374661 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs. Barton C; Chettipally U; Zhou Y; Jiang Z; Lynn-Palevsky A; Le S; Calvert J; Das R Comput Biol Med; 2019 Jun; 109():79-84. PubMed ID: 31035074 [TBL] [Abstract][Full Text] [Related]
3. Machine learning for prediction of septic shock at initial triage in emergency department. Kim J; Chang H; Kim D; Jang DH; Park I; Kim K J Crit Care; 2020 Feb; 55():163-170. PubMed ID: 31734491 [TBL] [Abstract][Full Text] [Related]
4. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945 [TBL] [Abstract][Full Text] [Related]
5. Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals. Burdick H; Pino E; Gabel-Comeau D; Gu C; Roberts J; Le S; Slote J; Saber N; Pellegrini E; Green-Saxena A; Hoffman J; Das R BMC Med Inform Decis Mak; 2020 Oct; 20(1):276. PubMed ID: 33109167 [TBL] [Abstract][Full Text] [Related]
6. Impact of Different Approaches to Preparing Notes for Analysis With Natural Language Processing on the Performance of Prediction Models in Intensive Care. Mahendra M; Luo Y; Mills H; Schenk G; Butte AJ; Dudley RA Crit Care Explor; 2021 Jun; 3(6):e0450. PubMed ID: 34136824 [TBL] [Abstract][Full Text] [Related]
7. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related]
8. Hypoalbuminemia, Low Base Excess Values, and Tachypnea Predict 28-Day Mortality in Severe Sepsis and Septic Shock Patients in the Emergency Department. Seo MH; Choa M; You JS; Lee HS; Hong JH; Park YS; Chung SP; Park I Yonsei Med J; 2016 Nov; 57(6):1361-9. PubMed ID: 27593863 [TBL] [Abstract][Full Text] [Related]
9. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
10. Development and External Validation of an Automated Computer-Aided Risk Score for Predicting Sepsis in Emergency Medical Admissions Using the Patient's First Electronically Recorded Vital Signs and Blood Test Results. Faisal M; Scally A; Richardson D; Beatson K; Howes R; Speed K; Mohammed MA Crit Care Med; 2018 Apr; 46(4):612-618. PubMed ID: 29369828 [TBL] [Abstract][Full Text] [Related]
11. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310 [TBL] [Abstract][Full Text] [Related]
12. Comparison of qSOFA and SIRS for predicting adverse outcomes of patients with suspicion of sepsis outside the intensive care unit. Finkelsztein EJ; Jones DS; Ma KC; Pabón MA; Delgado T; Nakahira K; Arbo JE; Berlin DA; Schenck EJ; Choi AM; Siempos II Crit Care; 2017 Mar; 21(1):73. PubMed ID: 28342442 [TBL] [Abstract][Full Text] [Related]
13. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Pirracchio R; Petersen ML; Carone M; Rigon MR; Chevret S; van der Laan MJ Lancet Respir Med; 2015 Jan; 3(1):42-52. PubMed ID: 25466337 [TBL] [Abstract][Full Text] [Related]
14. Machine learning algorithms for early sepsis detection in the emergency department: A retrospective study. Kijpaisalratana N; Sanglertsinlapachai D; Techaratsami S; Musikatavorn K; Saoraya J Int J Med Inform; 2022 Apr; 160():104689. PubMed ID: 35078027 [TBL] [Abstract][Full Text] [Related]
15. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
16. A combination of early warning score and lactate to predict intensive care unit transfer of inpatients with severe sepsis/septic shock. Yoo JW; Lee JR; Jung YK; Choi SH; Son JS; Kang BJ; Park TS; Huh JW; Lim CM; Koh Y; Hong SB Korean J Intern Med; 2015 Jul; 30(4):471-7. PubMed ID: 26161013 [TBL] [Abstract][Full Text] [Related]
17. Sepsis patients in the emergency department: stratification using the Clinical Impression Score, Predisposition, Infection, Response and Organ dysfunction score or quick Sequential Organ Failure Assessment score? Quinten VM; van Meurs M; Wolffensperger AE; Ter Maaten JC; Ligtenberg JJM Eur J Emerg Med; 2018 Oct; 25(5):328-334. PubMed ID: 28338533 [TBL] [Abstract][Full Text] [Related]
18. [Validation of a modified early warning score to predict ICU transfer for patients with severe sepsis or septic shock on general wards]. Lee JR; Choi HR J Korean Acad Nurs; 2014 Apr; 44(2):219-27. PubMed ID: 24859127 [TBL] [Abstract][Full Text] [Related]
19. Comparison of PIRO, SOFA, and MEDS scores for predicting mortality in emergency department patients with severe sepsis and septic shock. Macdonald SP; Arendts G; Fatovich DM; Brown SG Acad Emerg Med; 2014 Nov; 21(11):1257-63. PubMed ID: 25377403 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning Models for Analysis of Vital Signs Dynamics: A Case for Sepsis Onset Prediction. Bloch E; Rotem T; Cohen J; Singer P; Aperstein Y J Healthc Eng; 2019; 2019():5930379. PubMed ID: 31885832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]