These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 29374788)
1. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides Tausch (Poaceae, Triticeae). Shams I; Raskina O Protoplasma; 2018 Jul; 255(4):1023-1038. PubMed ID: 29374788 [TBL] [Abstract][Full Text] [Related]
2. Supernumerary B Chromosomes and Plant Genome Changes: A Snapshot of Wild Populations of Shams I; Raskina O Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32466617 [TBL] [Abstract][Full Text] [Related]
3. Genotype- and Cell-Specific Dynamics of Tandem Repeat Patterns in Aegilops speltoides Tausch (Poaceae, Triticeae). Raskina O Cytogenet Genome Res; 2017; 153(2):105-116. PubMed ID: 29232688 [TBL] [Abstract][Full Text] [Related]
4. Repetitive DNA in the Architecture, Repatterning, and Diversification of the Genome of Pollak Y; Zelinger E; Raskina O Front Plant Sci; 2018; 9():1779. PubMed ID: 30564259 [TBL] [Abstract][Full Text] [Related]
5. Transposable Elements in the Organization and Diversification of the Genome of Raskina O Int J Genomics; 2018; 2018():4373089. PubMed ID: 30356408 [TBL] [Abstract][Full Text] [Related]
6. Tandem repeats on an eco-geographical scale: outcomes from the genome of Aegilops speltoides. Raskina O; Brodsky L; Belyayev A Chromosome Res; 2011 Jul; 19(5):607-23. PubMed ID: 21656077 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781 [TBL] [Abstract][Full Text] [Related]
8. [Intraspecific divergence in wheats of the Emmer group using in situ hybridization with the Spelt1 family of tandem repeats]. Zoshchuk SA; Zoshchuk NV; Amosova AV; Dedkova OS; Badaeva ED Genetika; 2009 Nov; 45(11):1556-64. PubMed ID: 20058802 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Santos FC; Guyot R; do Valle CB; Chiari L; Techio VH; Heslop-Harrison P; Vanzela AL Chromosome Res; 2015 Sep; 23(3):571-82. PubMed ID: 26386563 [TBL] [Abstract][Full Text] [Related]
10. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats. Salina EA; Sergeeva EM; Adonina IG; Shcherban AB; Belcram H; Huneau C; Chalhoub B BMC Plant Biol; 2011 Jun; 11():99. PubMed ID: 21635794 [TBL] [Abstract][Full Text] [Related]
11. Fate of Aegilops speltoides-derived, repetitive DNA sequences in diploid Aegilops species, wheat-Aegilops amphiploids and derived chromosome addition lines. Kumar S; Friebe B; Gill BS Cytogenet Genome Res; 2010 Jul; 129(1-3):47-54. PubMed ID: 20551615 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Salina EA; Lim KY; Badaeva ED; Shcherban AB; Adonina IG; Amosova AV; Samatadze TE; Vatolina TY; Zoshchuk SA; Leitch AR Genome; 2006 Aug; 49(8):1023-35. PubMed ID: 17036077 [TBL] [Abstract][Full Text] [Related]
13. Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides. Hosid E; Brodsky L; Kalendar R; Raskina O; Belyayev A Genetics; 2012 Jan; 190(1):263-74. PubMed ID: 22042572 [TBL] [Abstract][Full Text] [Related]
14. A comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch. and related species. Salina EA; Adonina IG; Vatolina TY; Kurata N Genetica; 2004 Nov; 122(3):227-37. PubMed ID: 15609545 [TBL] [Abstract][Full Text] [Related]
15. Genome reorganization in F1 hybrids uncovers the role of retrotransposons in reproductive isolation. Senerchia N; Felber F; Parisod C Proc Biol Sci; 2015 Apr; 282(1804):20142874. PubMed ID: 25716787 [TBL] [Abstract][Full Text] [Related]
16. Different scales of Ty1/copia-like retrotransposon proliferation in the genomes of three diploid hybrid sunflower species. Kawakami T; Strakosh SC; Zhen Y; Ungerer MC Heredity (Edinb); 2010 Apr; 104(4):341-50. PubMed ID: 20068588 [TBL] [Abstract][Full Text] [Related]
17. [Intraspecific divergence in wheats of the Timopheevi group as revealed by in situ hybridization with tandem repeats of the Spelt1 and Spelt52 families]. Zoshchuk SA; Badaeva ED; Zoshchuk NV; Adonina IG; Shcherban' AB; Salina EA Genetika; 2007 Jun; 43(6):771-81. PubMed ID: 17853803 [TBL] [Abstract][Full Text] [Related]
18. Sequence Evolution, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in the Saccharum spontaneum Genome. Yang S; Zeng K; Chen K; Zhao X; Wu J; Huang Y; Zhang M; Deng Z Cytogenet Genome Res; 2020; 160(5):272-282. PubMed ID: 32516773 [TBL] [Abstract][Full Text] [Related]
19. Variability of the chromosomal distribution of Ty3-gypsy retrotransposons in the populations of two wild Triticeae species. Belyayev A; Raskina O; Nevo E Cytogenet Genome Res; 2005; 109(1-3):43-9. PubMed ID: 15753557 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary dynamics of retrotransposons assessed by high-throughput sequencing in wild relatives of wheat. Senerchia N; Wicker T; Felber F; Parisod C Genome Biol Evol; 2013; 5(5):1010-20. PubMed ID: 23595021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]