These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2937497)

  • 1. ATP-dependent calcium transport in rat parotid microsomes. I. Localization, properties, Ca2+-ATPase activity and phosphoenzyme formation.
    Bonis D; Chambaut-Guérin AM; Rossignol B
    Biol Cell; 1985; 55(1-2):55-62. PubMed ID: 2937497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active calcium transport by porcine thyroid microsomes.
    Nakamura Y; Miyamoto T; Koono M; Ohtaki S
    Endocrinology; 1986 Nov; 119(5):2058-65. PubMed ID: 2945712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme.
    Hanel AM; Jencks WP
    Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport and phosphorylated intermediate of (Ca2+ + Mg2+)-ATPase in plasma membranes of rat liver.
    Chan KM; Junger KD
    J Biol Chem; 1983 Apr; 258(7):4404-10. PubMed ID: 6131893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The (Ca2+ + Mg2+)-stimulated ATPase of the rat parotid endoplasmic reticulum.
    Thiyagarajah P; Lim SC
    Biochem J; 1986 Apr; 235(2):491-8. PubMed ID: 2943271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ uptake in bovine adrenocortical microsomes: formation of phosphorylated intermediate of Ca2+ dependent ATPase.
    Sumida M; Hamada M; Shimowake A; Morimoto C; Okuda H
    J Biochem; 1988 Nov; 104(5):687-92. PubMed ID: 2976756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic differences in the phospholamban-regulated calcium pump when studied in crude and purified cardiac sarcoplasmic reticulum vesicles.
    Antipenko A; Spielman AI; Kirchberger MA
    J Membr Biol; 1999 Feb; 167(3):257-65. PubMed ID: 9929378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Ca2+-pump-related phosphoprotein in plasma membrane vesicles of Ehrlich ascites carcinoma cells.
    Spitzer E; Böhmer FD; Grosse R
    Biochim Biophys Acta; 1983 Feb; 728(1):50-8. PubMed ID: 6131690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-activated ATPase in microsomes from human liver.
    Spamer C; Heilmann C; Gerok W
    J Biol Chem; 1987 Jun; 262(16):7782-9. PubMed ID: 2953725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle. Identification and characterization of an acid-stable phosphorylated intermediate of the Ca2+,Mg2+-ATPase.
    Sumida M; Okuda H; Hamada M
    J Biochem; 1984 Nov; 96(5):1365-74. PubMed ID: 6151948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ transport studied with arsenazo III in Tetrahymena microsomes. Effects of calcium ionophore A23187 and trifluoperazine.
    Muto Y; Nozawa Y
    Biochim Biophys Acta; 1985 May; 815(3):410-6. PubMed ID: 3158350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphoprotein intermediate of a Ca2+ transport ATPase in rat liver endoplasmic reticulum.
    Heilmann C; Spamer C; Gerok W
    Biochem Biophys Res Commun; 1983 Jul; 114(2):584-92. PubMed ID: 6136277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ uptake, Ca2+-ATPase activity, phosphoprotein formation and phosphate turnover in a microsomal fraction of smooth muscle.
    Raeymaekers L; Hasselbach W
    Eur J Biochem; 1981 May; 116(2):373-8. PubMed ID: 6454575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of the ATP-dependent phosphatidylserine synthesis in liver subcellular fractions.
    Barańska J
    FEBS Lett; 1989 Oct; 256(1-2):33-7. PubMed ID: 2530109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP-dependent Ca2+ uptake and Ca2+-dependent protein phosphorylation in basolateral liver plasma membranes.
    Evers C; Hugentobler G; Lester R; Gmaj P; Meier P; Murer H
    Biochim Biophys Acta; 1988 Apr; 939(3):542-50. PubMed ID: 2965601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen.
    Orlowski S; Champeil P
    Biochemistry; 1991 Nov; 30(47):11331-42. PubMed ID: 1835657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calmodulin-dependent elevation of calcium transport associated with calmodulin-dependent phosphorylation in cardiac sarcoplasmic reticulum.
    Plank B; Wyskovsky W; Hellmann G; Suko J
    Biochim Biophys Acta; 1983 Jul; 732(1):99-109. PubMed ID: 6307368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of a high affinity Ca2+-stimulated, Mg2+-dependent ATPase in the rat parotid plasma membrane.
    Teo TS; Thiyagarajah P; Lee MK
    Biochim Biophys Acta; 1988 Nov; 945(2):202-10. PubMed ID: 2973350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rate of Ca2+ translocation by sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase measured with intravesicular arsenazo III.
    Beeler T; Keffer J
    Biochim Biophys Acta; 1984 Jun; 773(1):99-105. PubMed ID: 6145443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.