These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2937511)

  • 1. Irreversible changes in oxidative phosphorylation activity of the mitochondrial membrane from hearts subjected to hypoxia and reoxygenation.
    Nakahara T; Takeo S
    Can J Cardiol; 1986; 2(1):24-33. PubMed ID: 2937511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible mechanism by which coenzyme Q10 improves reoxygenation-induced recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Tazuma Y; Miyake K; Murai R
    J Pharmacol Exp Ther; 1987 Dec; 243(3):1131-8. PubMed ID: 3694529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of ATP metabolites in induction of incomplete recovery of cardiac contractile force after hypoxia.
    Takeo S; Tanonaka K; Miyake K; Fukumoto T
    Can J Cardiol; 1988 May; 4(4):193-200. PubMed ID: 3395917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation.
    Ozcan C; Holmuhamedov EL; Jahangir A; Terzic A
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):298-306. PubMed ID: 11174735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of myocardial function after global hypoxia by protection of the inner mitochondrial membrane.
    Beyersdorf F; Zimmer G; Fuchs J; Kraft H; Veit P; Satter P
    Arzneimittelforschung; 1987 Feb; 37(2):142-9. PubMed ID: 2953343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible mechanisms for reoxygenation-induced recovery of myocardial high-energy phosphates after hypoxia.
    Takeo S; Sakanashi M
    J Mol Cell Cardiol; 1983 Sep; 15(9):577-94. PubMed ID: 6631971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamic and mitochondrial parameters during hypoxia and reoxygenation in working rat hearts.
    Freisleben HJ; Kriege H; Clarke C; Beyersdorf F; Zimmer G
    Arzneimittelforschung; 1991 Jan; 41(1):81-8. PubMed ID: 1710898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of adrenochrome on adenine nucleotides and mitochondrial oxidative phosphorylation in rat heart.
    Taam GM; Takeo S; Ziegelhoffer A; Singal PK; Beamish RE; Dhalla NS
    Can J Cardiol; 1986; 2(2):88-93. PubMed ID: 3635424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in mitochondrial matrix free calcium in perfused rat hearts subjected to hypoxia-reoxygenation.
    Allen SP; Darley-Usmar VM; McCormack JG; Stone D
    J Mol Cell Cardiol; 1993 Aug; 25(8):949-58. PubMed ID: 7505340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beneficial effects of lidocaine and disopyramide on oxygen-deficiency-induced contractile failure and metabolic disturbance in isolated rabbit hearts.
    Takeo S; Tanonaka K; Shimizu K; Hirai K; Miyake K; Minematsu R
    J Pharmacol Exp Ther; 1989 Jan; 248(1):306-14. PubMed ID: 2913276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment of mitochondrial and sarcoplasmic reticular functions during the development of heart failure in cardiomyopathic (UM-X7.1) hamsters.
    Panagia V; Lee SL; Singh A; Pierce GN; Jasmin G; Dhalla NS
    Can J Cardiol; 1986; 2(4):236-47. PubMed ID: 2945628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemodynamics and mitochondrial energy metabolism in right heart hypertrophy after acute hypoxic stress.
    Thürich T; Bereiter-Hahn J; Schneider M; Zimmer G
    Arzneimittelforschung; 1999 Mar; 49(3):212-20. PubMed ID: 10219464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption and tissue Ca2+ uptake during reoxygenation after hypoxia in the rabbit.
    Nakanishi T; Uemura S; Jarmakani JM
    Can J Cardiol; 1985 Mar; 1(2):148-54. PubMed ID: 3850769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardioprotective effects of dihydrolipoic acid and tocopherol in right heart hypertrophy during oxidative stress.
    Thürich T; Bereiter-Hahn J; Schneider M; Zimmer G
    Arzneimittelforschung; 1998 Jan; 48(1):13-21. PubMed ID: 9522025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of bepridil on heart mitochondrial membrane and the isolated rat heart preparation.
    Fuchs J; Mainka L; Reifart N; Zimmer G
    Arzneimittelforschung; 1986 Feb; 36(2):209-12. PubMed ID: 2938592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of reversible ischemia on the activity of the mitochondrial ATPase: relationship to ischemic preconditioning.
    Vander Heide RS; Hill ML; Reimer KA; Jennings RB
    J Mol Cell Cardiol; 1996 Jan; 28(1):103-12. PubMed ID: 8745218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effects of diltiazem during myocardial ischemia in isolated cat hearts.
    Bush LR; Li YP; Shlafer M; Jolly SR; Lucchesi BR
    J Pharmacol Exp Ther; 1981 Sep; 218(3):653-61. PubMed ID: 7264949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trifluoperazine protection of hypoxic myocardium.
    Karwatowska-Kryńska E; Beresewicz A
    Pol J Pharmacol Pharm; 1985; 37(5):615-27. PubMed ID: 3832010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.