These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29375279)

  • 1. Force Tracking with Feed-Forward Motion Estimation for Beating Heart Surgery.
    Yuen SG; Perrin DP; Vasilyev NV; Del Nido PJ; Howe RD
    IEEE Trans Robot; 2010 Aug; 26(5):888-896. PubMed ID: 29375279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic Force Stabilization for Beating Heart Intracardiac Surgery.
    Yuen SG; Yip MC; Vasilyev NV; Perrin DP; Del Nido PJ; Howe RD
    Med Image Comput Comput Assist Interv; 2009 Oct; 5761(2009):26-33. PubMed ID: 20431713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic force stabilization for beating heart intracardiac surgery.
    Yuen SG; Yip MC; Vasilyev NV; Perrin DP; del Nido PJ; Howe RD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 1):26-33. PubMed ID: 20425967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic tissue tracking for beating heart mitral valve surgery.
    Yuen SG; Vasilyev NV; del Nido PJ; Howe RD
    Med Image Anal; 2013 Dec; 17(8):1236-42. PubMed ID: 23973122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards active tracking of beating heart motion in the presence of arrhythmia for robotic assisted beating heart surgery.
    Tuna EE; Karimov JH; Liu T; Bebek Ö; Fukamachi K; Çavuşoğlu MC
    PLoS One; 2014; 9(7):e102877. PubMed ID: 25048462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic Motion Compensation for Beating Heart Intracardiac Surgery.
    Yuen SG; Kettler DT; Novotny PM; Plowes RD; Howe RD
    Int J Rob Res; 2009 Oct; 28(10):1355-1372. PubMed ID: 20436927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.
    Liu C; Moreira P; Zemiti N; Poignet P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7054-8. PubMed ID: 22255963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heart Motion Prediction Based on Adaptive Estimation Algorithms for Robotic Assisted Beating Heart Surgery.
    Tuna EE; Franke TJ; Bebek O; Shiose A; Fukamachi K; Cavuşoğlu MC
    IEEE Trans Robot; 2013 Feb; 29(1):261-276. PubMed ID: 23976889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A minimally invasive robotic surgery approach to perform totally endoscopic coronary artery bypass on beating hearts.
    Alamdar A; Hanife S; Farahmand F; Behzadipour S; Mirbagheri A
    Med Hypotheses; 2019 Mar; 124():76-83. PubMed ID: 30798923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of infrared tracking of beating heart motion for robotic assisted beating heart surgery.
    Mansouri S; Farahmand F; Vossoughi G; Ghavidel AA; Rezayat M
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29063675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards robot-assisted anchor deployment in beating-heart mitral valve surgery.
    Cheng L; Sharifi M; Tavakoli M
    Int J Med Robot; 2018 Jun; 14(3):e1900. PubMed ID: 29573179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limitations for manual and telemanipulator-assisted motion tracking--implications for endoscopic beating-heart surgery.
    Jacobs S; Holzhey D; Kiaii BB; Onnasch JF; Walther T; Mohr FW; Falk V
    Ann Thorac Surg; 2003 Dec; 76(6):2029-35; discussion 2035-6. PubMed ID: 14667635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic model based force control for soft tissue interaction and its application in physiological motion compensation.
    Moreira P; Zemiti N; Liu C; Poignet P
    Comput Methods Programs Biomed; 2014 Sep; 116(2):52-67. PubMed ID: 24612709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.
    Bennett CR; Kelly BP
    J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force Control of Flexible Catheter Robots for Beating Heart Surgery.
    Kesner SB; Howe RD
    IEEE Int Conf Robot Autom; 2011; ():1589-1594. PubMed ID: 21874164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards automated ultrasound imaging-robotic image acquisition in liver and prostate for long-term motion monitoring.
    Ipsen S; Wulff D; Kuhlemann I; Schweikard A; Ernst F
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Control of Motion Compensation Cardiac Catheters.
    Kesner SB; Howe RD
    IEEE Int Conf Robot Autom; 2010 May; 2010():1059-1065. PubMed ID: 29375926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.
    Bogatyrenko E; Pompey P; Hanebeck UD
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):387-99. PubMed ID: 20694522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust feature tracking on the beating heart for a robotic-guided endoscope.
    Elhawary H; Popovic A
    Int J Med Robot; 2011 Dec; 7(4):459-68. PubMed ID: 22113979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic tracking of an organ section with an ultrasound probe: compensation of respiratory motion.
    Nadeau C; Krupa A; Gangloff J
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):57-64. PubMed ID: 22003600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.