BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 29375284)

  • 1. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification.
    Rueckauer B; Lungu IA; Hu Y; Pfeiffer M; Liu SC
    Front Neurosci; 2017; 11():682. PubMed ID: 29375284
    [No Abstract]   [Full Text] [Related]  

  • 2. Effective Plug-Ins for Reducing Inference-Latency of Spiking Convolutional Neural Networks During Inference Phase.
    Chen X; Yuan X; Fu G; Luo Y; Yue T; Yan F; Wang Y; Pan H
    Front Comput Neurosci; 2021; 15():697469. PubMed ID: 34733147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training Deep Spiking Neural Networks Using Backpropagation.
    Lee JH; Delbruck T; Pfeiffer M
    Front Neurosci; 2016; 10():508. PubMed ID: 27877107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Going Deeper in Spiking Neural Networks: VGG and Residual Architectures.
    Sengupta A; Ye Y; Wang R; Liu C; Roy K
    Front Neurosci; 2019; 13():95. PubMed ID: 30899212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications.
    Sorbaro M; Liu Q; Bortone M; Sheik S
    Front Neurosci; 2020; 14():662. PubMed ID: 32694978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Little Energy Goes a Long Way: Build an Energy-Efficient, Accurate Spiking Neural Network From Convolutional Neural Network.
    Wu D; Yi X; Huang X
    Front Neurosci; 2022; 16():759900. PubMed ID: 35692427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiking Deep Residual Networks.
    Hu Y; Tang H; Pan G
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):5200-5205. PubMed ID: 34723807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms.
    Syed T; Kakani V; Cui X; Kim H
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning in spiking neural networks.
    Tavanaei A; Ghodrati M; Kheradpisheh SR; Masquelier T; Maida A
    Neural Netw; 2019 Mar; 111():47-63. PubMed ID: 30682710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An exact mapping from ReLU networks to spiking neural networks.
    Stanojevic A; Woźniak S; Bellec G; Cherubini G; Pantazi A; Gerstner W
    Neural Netw; 2023 Nov; 168():74-88. PubMed ID: 37742533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning With Spiking Neurons: Opportunities and Challenges.
    Pfeiffer M; Pfeil T
    Front Neurosci; 2018; 12():774. PubMed ID: 30410432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing and Accelerating the Bottlenecks of Training Deep SNNs With Backpropagation.
    Chen R; Li L
    Neural Comput; 2020 Dec; 32(12):2557-2600. PubMed ID: 32946710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep CovDenseSNN: A hierarchical event-driven dynamic framework with spiking neurons in noisy environment.
    Xu Q; Peng J; Shen J; Tang H; Pan G
    Neural Netw; 2020 Jan; 121():512-519. PubMed ID: 31733521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SPIDEN: deep Spiking Neural Networks for efficient image denoising.
    Castagnetti A; Pegatoquet A; Miramond B
    Front Neurosci; 2023; 17():1224457. PubMed ID: 37638316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch.
    Kim Y; Panda P
    Front Neurosci; 2021; 15():773954. PubMed ID: 34955725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradient-based feature-attribution explainability methods for spiking neural networks.
    Bitar A; Rosales R; Paulitsch M
    Front Neurosci; 2023; 17():1153999. PubMed ID: 37829721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.