BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 29375316)

  • 1. Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives.
    Liu S; Schackel T; Weidner N; Puttagunta R
    Front Cell Neurosci; 2017; 11():430. PubMed ID: 29375316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury.
    Wilems TS; Pardieck J; Iyer N; Sakiyama-Elbert SE
    Acta Biomater; 2015 Dec; 28():23-32. PubMed ID: 26384702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Olfactory ensheathing cells: bridging the gap in spinal cord injury.
    Bartolomei JC; Greer CA
    Neurosurgery; 2000 Nov; 47(5):1057-69. PubMed ID: 11063098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olfactory ensheathing cells seeded decellularized scaffold promotes axonal regeneration in spinal cord injury rats.
    Yu F; Li P; Du S; Lui KW; Lin Y; Chen L; Ren Q; Wang J; Mei J; Xiao J; Zhu J
    J Biomed Mater Res A; 2021 May; 109(5):779-787. PubMed ID: 32720459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs).
    Gómez RM; Sánchez MY; Portela-Lomba M; Ghotme K; Barreto GE; Sierra J; Moreno-Flores MT
    Glia; 2018 Jul; 66(7):1267-1301. PubMed ID: 29330870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Regenerative Effects of Transplanting Three-Dimensional Longitudinal Scaffold Loaded-Human Mesenchymal Stem Cells and Human Neural Stem Cells on Spinal Cord Completely Transected Rats.
    Zou Y; Zhao Y; Xiao Z; Chen B; Ma D; Shen H; Gu R; Dai J
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1671-1680. PubMed ID: 33455365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal differentiation and inhibition of glial differentiation of murine neural stem cells by pHPMA hydrogel for the repair of injured spinal cord.
    Rybachuk O; Nesterenko Y; Pinet É; Medvediev V; Yaminsky Y; Tsymbaliuk V
    Exp Neurol; 2023 Oct; 368():114497. PubMed ID: 37517459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus.
    Kanno H; Pearse DD; Ozawa H; Itoi E; Bunge MB
    Rev Neurosci; 2015; 26(2):121-8. PubMed ID: 25581750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats.
    Ferrero-Gutierrez A; Menendez-Menendez Y; Alvarez-Viejo M; Meana A; Otero J
    Histol Histopathol; 2013 Jan; 28(1):89-100. PubMed ID: 23233062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: A systematic review and network meta-analysis.
    Jeon J; Park SH; Choi J; Han SM; Kim HW; Shim SR; Hyun JK
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38871200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds.
    Katoh H; Yokota K; Fehlings MG
    Front Cell Neurosci; 2019; 13():248. PubMed ID: 31244609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined strategy of mesenchymal stem cells and tissue-engineered scaffolds for spinal cord injury regeneration.
    Libro R; Bramanti P; Mazzon E
    Exp Ther Med; 2017 Oct; 14(4):3355-3368. PubMed ID: 29042919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury.
    Ramer LM; Au E; Richter MW; Liu J; Tetzlaff W; Roskams AJ
    J Comp Neurol; 2004 May; 473(1):1-15. PubMed ID: 15067714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair.
    Silva NA; Sousa RA; Pires AO; Sousa N; Salgado AJ; Reis RL
    J Biomed Mater Res A; 2012 Feb; 100(2):470-6. PubMed ID: 22125000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial strategies for cell transplantation in traumatic spinal cord injury.
    Jagrit V; Koffler J; Dulin JN
    Front Neurosci; 2024; 18():1349446. PubMed ID: 38510468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
    Suzuki H; Imajo Y; Funaba M; Ikeda H; Nishida N; Sakai T
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory ensheathing cells do not exhibit unique migratory or axonal growth-promoting properties after spinal cord injury.
    Lu P; Yang H; Culbertson M; Graham L; Roskams AJ; Tuszynski MH
    J Neurosci; 2006 Oct; 26(43):11120-30. PubMed ID: 17065452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minocycline Enhance the Restorative Ability of Olfactory Ensheathing Cells by the Upregulation of BDNF and GDNF Expression After Spinal Cord Injury.
    Pourkhodadad S; Oryan S; Hadipour MM; Kaka G; Sadraie SH
    Basic Clin Neurosci; 2021; 12(6):777-788. PubMed ID: 35693138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.