These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29375372)

  • 1. Computational Model of Antidepressant Response Heterogeneity as Multi-pathway Neuroadaptation.
    Camacho MB; Anastasio TJ
    Front Pharmacol; 2017; 8():925. PubMed ID: 29375372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Analysis of Therapeutic Neuroadaptation to Chronic Antidepressant in a Model of the Monoaminergic Neurotransmitter and Stress Hormone Systems.
    Camacho MB; Vijitbenjaronk WD; Anastasio TJ
    Front Pharmacol; 2019; 10():1215. PubMed ID: 31708770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of the monoaminergic neurotransmitter and male neuroendocrine systems in an analysis of therapeutic neuroadaptation to chronic antidepressant.
    Camacho MB; Vijitbenjaronk WD; Anastasio TJ
    Eur Neuropsychopharmacol; 2020 Feb; 31():86-99. PubMed ID: 31831204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanism of action of antidepressants and therapeutic perspectives].
    Bourin M; David DJ; Jolliet P; Gardier A
    Therapie; 2002; 57(4):385-96. PubMed ID: 12422559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central monoamines and their role in major depression.
    Elhwuegi AS
    Prog Neuropsychopharmacol Biol Psychiatry; 2004 May; 28(3):435-51. PubMed ID: 15093950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of co-administration of varenicline and antidepressants on extracellular monoamine concentrations in rat prefrontal cortex.
    Rollema H; Wilson GG; Lee TC; Folgering JH; Flik G
    Neurochem Int; 2011 Jan; 58(1):78-84. PubMed ID: 21056607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Antidepressant drugs and central monoaminergic receptors].
    Asakura M; Tsukamoto T
    Yakubutsu Seishin Kodo; 1985 Dec; 5(4):303-19. PubMed ID: 2870595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacologic approaches to treatment resistant depression: Evidences and personal experience.
    Tundo A; de Filippis R; Proietti L
    World J Psychiatry; 2015 Sep; 5(3):330-41. PubMed ID: 26425446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VEGF-induced antidepressant effects involve modulation of norepinephrine and serotonin systems.
    Udo H; Hamasu K; Furuse M; Sugiyama H
    Behav Brain Res; 2014 Dec; 275():107-13. PubMed ID: 25218306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The monoaminergic tripartite synapse: a putative target for currently available antidepressant drugs.
    Quesseveur G; Gardier AM; Guiard BP
    Curr Drug Targets; 2013 Oct; 14(11):1277-94. PubMed ID: 24020973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of BDNF expression through promoter IV disturbs expression of monoamine genes in the frontal cortex and hippocampus.
    Sakata K; Duke SM
    Neuroscience; 2014 Feb; 260():265-75. PubMed ID: 24345476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidepressant properties of substance P antagonists: relationship to monoaminergic mechanisms?
    Adell A
    Curr Drug Targets CNS Neurol Disord; 2004 Apr; 3(2):113-21. PubMed ID: 15078186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoamine neurocircuitry in depression and strategies for new treatments.
    Hamon M; Blier P
    Prog Neuropsychopharmacol Biol Psychiatry; 2013 Aug; 45():54-63. PubMed ID: 23602950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of serotonin and dopamine in the mechanism of action of novel antidepressant drugs: a review.
    Bonhomme N; Esposito E
    J Clin Psychopharmacol; 1998 Dec; 18(6):447-54. PubMed ID: 9864076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The putative antidepressant DOV 216,303, a triple reuptake inhibitor, increases monoamine release in the prefrontal cortex of olfactory bulbectomized rats.
    Prins J; Denys DA; Westphal KG; Korte-Bouws GA; Quinton MS; Schreiber R; Groenink L; Olivier B; Korte SM
    Eur J Pharmacol; 2010 May; 633(1-3):55-61. PubMed ID: 20153745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of glucocorticoid receptor gene expression by antidepressant drugs.
    Barden N
    Pharmacopsychiatry; 1996 Jan; 29(1):12-22. PubMed ID: 8852529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of antidepressants on uptake and receptor systems in the brain.
    Fuller RW; Wong DT
    Prog Neuropsychopharmacol Biol Psychiatry; 1985; 9(5-6):485-90. PubMed ID: 2868490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic antidepressant therapy and associated changes in central monoaminergic receptor functioning.
    Sugrue MF
    Pharmacol Ther; 1983; 21(1):1-33. PubMed ID: 6312466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Monoaminergic Systems by Antidepressants in the Frontal Cortex of Rats After Chronic Mild Stress Exposure.
    Martín-Hernández D; Pereira MP; Tendilla-Beltrán H; Madrigal JLM; García-Bueno B; Leza JC; Caso JR
    Mol Neurobiol; 2019 Nov; 56(11):7522-7533. PubMed ID: 31054078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine.
    Conti B; Maier R; Barr AM; Morale MC; Lu X; Sanna PP; Bilbe G; Hoyer D; Bartfai T
    Mol Psychiatry; 2007 Feb; 12(2):167-89. PubMed ID: 17033635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.