These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29375395)

  • 1. Carbonyl Emissions in E-cigarette Aerosol: A Systematic Review and Methodological Considerations.
    Farsalinos KE; Gillman G
    Front Physiol; 2017; 8():1119. PubMed ID: 29375395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonyl emissions from a novel heated tobacco product (IQOS): comparison with an e-cigarette and a tobacco cigarette.
    Farsalinos KE; Yannovits N; Sarri T; Voudris V; Poulas K; Leischow SJ
    Addiction; 2018 Nov; 113(11):2099-2106. PubMed ID: 29920842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E-cigarettes generate high levels of aldehydes only in 'dry puff' conditions.
    Farsalinos KE; Voudris V; Poulas K
    Addiction; 2015 Aug; 110(8):1352-6. PubMed ID: 25996087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile aldehyde emissions from "sub-ohm" vaping devices.
    Cancelada L; Tang X; Russell ML; Maddalena RL; Litter MI; Gundel LA; Destaillats H
    Environ Res; 2021 Jun; 197():111188. PubMed ID: 33894240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of More Intense Smoking Parameters and Flavor Variety on Toxicant Levels in Emissions of a Heated Tobacco Product.
    Davigo M; Klerx WNM; van Schooten FJ; Opperhuizen A; Remels AHV; Talhout R
    Nicotine Tob Res; 2024 Apr; 26(5):571-579. PubMed ID: 38035623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotine Delivery to the Aerosol of a Heat-Not-Burn Tobacco Product: Comparison With a Tobacco Cigarette and E-Cigarettes.
    Farsalinos KE; Yannovits N; Sarri T; Voudris V; Poulas K
    Nicotine Tob Res; 2018 Jul; 20(8):1004-1009. PubMed ID: 28637344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of machine-based puffing parameters on aerosol and smoke emissions from next generation nicotine inhalation products.
    McAdam K; Davis P; Ashmore L; Eaton D; Jakaj B; Eldridge A; Liu C
    Regul Toxicol Pharmacol; 2019 Feb; 101():156-165. PubMed ID: 30445136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aldehyde levels in e-cigarette aerosol: Findings from a replication study and from use of a new-generation device.
    Farsalinos KE; Kistler KA; Pennington A; Spyrou A; Kouretas D; Gillman G
    Food Chem Toxicol; 2018 Jan; 111():64-70. PubMed ID: 29109042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical Review of the Recent Literature on Organic Byproducts in E-Cigarette Aerosol Emissions.
    Soulet S; Sussman RA
    Toxics; 2022 Nov; 10(12):. PubMed ID: 36548547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonyls and Carbon Monoxide Emissions from Electronic Cigarettes Affected by Device Type and Use Patterns.
    Son Y; Bhattarai C; Samburova V; Khlystov A
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32316435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke.
    Pang X; Lewis AC
    Sci Total Environ; 2011 Nov; 409(23):5000-9. PubMed ID: 21925713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E-cigarettes emit very high formaldehyde levels only in conditions that are aversive to users: A replication study under verified realistic use conditions.
    Farsalinos KE; Voudris V; Spyrou A; Poulas K
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):90-94. PubMed ID: 28864295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of puffing conditions on the carbonyl composition of e-cigarette aerosols.
    Beauval N; Verrièle M; Garat A; Fronval I; Dusautoir R; Anthérieu S; Garçon G; Lo-Guidice JM; Allorge D; Locoge N
    Int J Hyg Environ Health; 2019 Jan; 222(1):136-146. PubMed ID: 30220464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke.
    Margham J; McAdam K; Forster M; Liu C; Wright C; Mariner D; Proctor C
    Chem Res Toxicol; 2016 Oct; 29(10):1662-1678. PubMed ID: 27641760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of battery power setting on carbonyl emissions from electronic cigarettes.
    Zelinkova Z; Wenzl T
    Tob Induc Dis; 2020; 18():77. PubMed ID: 33013273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics.
    El-Hellani A; Salman R; El-Hage R; Talih S; Malek N; Baalbaki R; Karaoghlanian N; Nakkash R; Shihadeh A; Saliba NA
    Nicotine Tob Res; 2018 Jan; 20(2):215-223. PubMed ID: 27798087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols.
    Flora JW; Wilkinson CT; Wilkinson JW; Lipowicz PJ; Skapars JA; Anderson A; Miller JH
    J Chromatogr Sci; 2017 Feb; 55(2):142-148. PubMed ID: 28087758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Puffing Topography and Nicotine Consumption Depending on the Power Setting of Electronic Cigarettes.
    Farsalinos K; Poulas K; Voudris V
    Nicotine Tob Res; 2018 Jul; 20(8):993-997. PubMed ID: 29059377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Spatial and Temporal Dispersion Differences Between Exhaled E-Cigarette Mist and Cigarette Smoke.
    Martuzevicius D; Prasauskas T; Setyan A; O'Connell G; Cahours X; Julien R; Colard S
    Nicotine Tob Res; 2019 Sep; 21(10):1371-1377. PubMed ID: 29924352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Automated Aerosol Collection and Extraction System to Characterize Electronic Cigarette Aerosols.
    Son Y; Khlystov A
    Front Chem; 2021; 9():764730. PubMed ID: 34805094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.