These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29375469)

  • 1. Dietary Iron Repletion following Early-Life Dietary Iron Deficiency Does Not Correct Regional Volumetric or Diffusion Tensor Changes in the Developing Pig Brain.
    Mudd AT; Fil JE; Knight LC; Dilger RN
    Front Neurol; 2017; 8():735. PubMed ID: 29375469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early-Life Iron Deficiency Reduces Brain Iron Content and Alters Brain Tissue Composition Despite Iron Repletion: A Neuroimaging Assessment.
    Mudd AT; Fil JE; Knight LC; Lam F; Liang ZP; Dilger RN
    Nutrients; 2018 Jan; 10(2):. PubMed ID: 29382055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early-Life Iron Deficiency and Subsequent Repletion Alters Development of the Colonic Microbiota in the Pig.
    Knight LC; Wang M; Donovan SM; Dilger RN
    Front Nutr; 2019; 6():120. PubMed ID: 31440513
    [No Abstract]   [Full Text] [Related]  

  • 4. Longitudinal Effects of Iron Deficiency Anemia and Subsequent Repletion on Blood Parameters and the Rate and Composition of Growth in Pigs.
    Knight LC; Dilger RN
    Nutrients; 2018 May; 10(5):. PubMed ID: 29772815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early-Life Supplementation of Bovine Milk Osteopontin Supports Neurodevelopment and Influences Exploratory Behavior.
    Joung S; Fil JE; Heckmann AB; Kvistgaard AS; Dilger RN
    Nutrients; 2020 Jul; 12(8):. PubMed ID: 32722080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Dietary Bovine Milk Fat Globule Membrane Supplementation on Growth, Serum Cholesterol and Lipoproteins, and Neurodevelopment in the Young Pig.
    Fil JE; Fleming SA; Chichlowski M; Gross G; Berg BM; Dilger RN
    Front Pediatr; 2019; 7():417. PubMed ID: 31681715
    [No Abstract]   [Full Text] [Related]  

  • 7. Maternal Dietary Choline Status Influences Brain Gray and White Matter Development in Young Pigs.
    Mudd AT; Getty CM; Dilger RN
    Curr Dev Nutr; 2018 Jun; 2(6):nzy015. PubMed ID: 29955727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal Iron Deficiency Alters Brain Development in Piglets.
    Leyshon BJ; Radlowski EC; Mudd AT; Steelman AJ; Johnson RW
    J Nutr; 2016 Jul; 146(7):1420-7. PubMed ID: 27281804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of 2'-Fucosyllactose and
    Sutkus LT; Joung S; Hirvonen J; Jensen HM; Ouwehand AC; Mukherjea R; Donovan SM; Dilger RN
    Front Neurosci; 2022; 16():860368. PubMed ID: 35546890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary Alpha-Lipoic Acid Alters Piglet Neurodevelopment.
    Mudd AT; Waworuntu RV; Berg BM; Dilger RN
    Front Pediatr; 2016; 4():44. PubMed ID: 27200325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perinatal choline deficiency delays brain development and alters metabolite concentrations in the young pig.
    Mudd AT; Getty CM; Sutton BP; Dilger RN
    Nutr Neurosci; 2016 Dec; 19(10):425-433. PubMed ID: 26046479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of subcortical grey matter abnormalities in patients with MRI-negative cortical epilepsy determined through structural and tensor magnetic resonance imaging.
    Peng SJ; Harnod T; Tsai JZ; Ker MD; Chiou JC; Chiueh H; Wu CY; Hsin YL
    BMC Neurol; 2014 May; 14():104. PubMed ID: 24885823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal Guinea Pig Brain Development, as Revealed by Magnetic Resonance and Diffusion Kurtosis Imaging.
    Mullins RJ; Xu S; Zhuo J; Roys S; Pereira EFR; Albuquerque EX; Gullapalli RP
    Brain Sci; 2020 Jun; 10(6):. PubMed ID: 32545593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Choline Supplementation Partially Restores Dendrite Structural Complexity in Developing Iron-Deficient Mouse Hippocampal Neurons.
    Bastian TW; von Hohenberg WC; Kaus OR; Lanier LM; Georgieff MK
    J Nutr; 2022 Mar; 152(3):747-757. PubMed ID: 34958369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration.
    Pfefferbaum A; Adalsteinsson E; Rohlfing T; Sullivan EV
    Neurobiol Aging; 2010 Mar; 31(3):482-93. PubMed ID: 18513834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in dietary iron alter brain iron metabolism in developing rats.
    PiƱero DJ; Li NQ; Connor JR; Beard JL
    J Nutr; 2000 Feb; 130(2):254-63. PubMed ID: 10720179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-weaning dietary iron deficiency impairs spatial learning and memory in the cognitive holeboard task in piglets.
    Antonides A; Schoonderwoerd AC; Scholz G; Berg BM; Nordquist RE; van der Staay FJ
    Front Behav Neurosci; 2015; 9():291. PubMed ID: 26578919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal subcortical components of the corticostriatal system in young adults with DLI: a combined structural MRI and DTI study.
    Lee JC; Nopoulos PC; Bruce Tomblin J
    Neuropsychologia; 2013 Sep; 51(11):2154-61. PubMed ID: 23896446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary supplementation of 3'-sialyllactose or 6'-sialyllactose elicits minimal influence on cognitive and brain development in growing pigs.
    Golden RK; Sutkus LT; Donovan SM; Dilger RN
    Front Behav Neurosci; 2023; 17():1337897. PubMed ID: 38268796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants.
    Rose J; Vassar R; Cahill-Rowley K; Stecher Guzman X; Hintz SR; Stevenson DK; Barnea-Goraly N
    Neuroimage Clin; 2014; 5():169-77. PubMed ID: 25068107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.