BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29375651)

  • 1. Computational FEM Model,
    Guerrero López GD; Cepeda Rubio MFJ; Hernández Jácquez JI; Vera Hernandez A; Leija Salas L; Valdés Perezgasga F; Flores García F
    Comput Math Methods Med; 2017; 2017():1562869. PubMed ID: 29375651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of Using a Novel 2.45 GHz Double Short Distance Slot Coaxial Antenna for Minimally Invasive Cancer Breast Microwave Ablation Therapy: Computational Model, Phantom, and
    Ortega-Palacios R; Trujillo-Romero CJ; Cepeda Rubio MFJ; Vera A; Leija L; Reyes JL; Ramírez-Estudillo MC; Morales-Alvarez F; Vega-López MA
    J Healthc Eng; 2018; 2018():5806753. PubMed ID: 29854360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.
    Jiang Y; Zhao J; Li W; Yang Y; Liu J; Qian Z
    Med Biol Eng Comput; 2017 Nov; 55(11):2027-2036. PubMed ID: 28462497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconfigurable tapered coaxial slot antenna for hepatic microwave ablation.
    Malhotra N; Marwaha A; Kumar A
    Electromagn Biol Med; 2016; 35(3):214-21. PubMed ID: 26147191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-slot coaxial microwave antenna for liver tumor ablation.
    Ge M; Jiang H; Huang X; Zhou Y; Zhi D; Zhao G; Chen Y; Wang L; Qiu B
    Phys Med Biol; 2018 Sep; 63(17):175011. PubMed ID: 30102247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation.
    Ibitoye ZA; Nwoye EO; Aweda MA; Oremosu AA; Annunobi CC; Akanmu ON
    Med Eng Phys; 2015 Apr; 37(4):384-91. PubMed ID: 25686672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational FEM Model and Phantom Validation of Microwave Ablation for Segmental Microcalcifications in Breasts Using a Coaxial Double-Slot Antenna.
    Segura Félix K; Guerrero López GD; Cepeda Rubio MFJ; Hernández Jacquez JI; Flores García FG; Hernández AV; Salas LL; Orozco Ruiz de la Peña EC
    Biomed Res Int; 2021; 2021():8858822. PubMed ID: 33688503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of aperiodic tri-slot antennas for the conformal ablation of liver tumors using an experimentally validated MWA computer model.
    Wu C; Huang H; Liu Y; Chen L; Yu S; Moser MAJ; Zhang W; Fang Z; Zhang B
    Comput Methods Programs Biomed; 2023 Dec; 242():107799. PubMed ID: 37703699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical study of microwave ablation on ex-vivo porcine lung.
    Gao X; Tian Z; Cheng Y; Geng B; Chen S; Nan Q
    Electromagn Biol Med; 2019; 38(4):249-261. PubMed ID: 31554439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations.
    Deshazer G; Prakash P; Merck D; Haemmerich D
    Int J Hyperthermia; 2017 Feb; 33(1):74-82. PubMed ID: 27431040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimal sliding choke antenna for hepatic microwave ablation.
    Prakash P; Converse MC; Webster JG; Mahvi DM
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2470-6. PubMed ID: 19535312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study on thermal field of microwave ablation with water-cooled antenna.
    Lu Y; Nan Q; Li L; Liu Y
    Int J Hyperthermia; 2009 Mar; 25(2):108-15. PubMed ID: 19337911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy.
    Du Y; Zhang L; Sang L; Wu D
    Technol Health Care; 2016 Apr; 24 Suppl 2():S675-82. PubMed ID: 27177098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model.
    Bertram JM; Yang D; Converse MC; Webster JG; Mahvi DM
    Biomed Eng Online; 2006 Feb; 5():15. PubMed ID: 16504153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue.
    Chaichanyut M; Tungjitkusolmun S
    Comput Math Methods Med; 2016; 2016():4846738. PubMed ID: 27642364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of phase difference in multi-antenna microwave thermal ablation for breast cancer treatment.
    Phasukkit P; Sanpanich A; Tungjitkusolmun S; Hamamoto K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3718-21. PubMed ID: 24110538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heating characteristics of antenna arrays used in microwave ablation: A theoretical parametric study.
    Karampatzakis A; Kühn S; Tsanidis G; Neufeld E; Samaras T; Kuster N
    Comput Biol Med; 2013 Oct; 43(10):1321-7. PubMed ID: 24034722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.