These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29375727)

  • 41. Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles.
    Wang Q; Zhang D; Xu H; Yang X; Shen AQ; Yang Y
    Lab Chip; 2012 Nov; 12(22):4781-6. PubMed ID: 22992786
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlled self-assembly of alginate microgels by rapidly binding molecule pairs.
    Hu Y; Mao AS; Desai RM; Wang H; Weitz DA; Mooney DJ
    Lab Chip; 2017 Jul; 17(14):2481-2490. PubMed ID: 28627581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions.
    Ma D; Tu ZC; Wang H; Zhang Z; McClements DJ
    J Agric Food Chem; 2018 Apr; 66(15):3930-3938. PubMed ID: 29595967
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pH-induced fluorescent active sodium alginate-based ionically conjugated and REDOX responsive multi-functional microgels for the anticancer drug delivery.
    Shee M; Lal Banerjee S; Dey A; Das Jana I; Basak P; Mandal M; Mondal A; Kumar Das A; Das NC
    Int J Pharm; 2024 Sep; 662():124490. PubMed ID: 39032873
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Lee SJ; Jeon O; Lee YB; Alt DS; Ding A; Tang R; Alsberg E
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712035
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and Evaluation of Polyacrylate Microgels and Their Adjuvant Activities Using Ovalbumin as a Model Antigen.
    Li C; Bi Y; Zhou M; Bai L; Chen X; Xiao J; Zhang F; Zhou H; Li Y
    ChemistryOpen; 2023 Apr; 12(4):e202200246. PubMed ID: 37009889
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach.
    Ahmed H; Stokke BT
    Lab Chip; 2021 Jun; 21(11):2232-2243. PubMed ID: 33903873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stable and degradable microgels linked with cystine for storing and environmentally triggered release of drugs.
    Mackiewicz M; Kaniewska K; Romanski J; Augustin E; Stojek Z; Karbarz M
    J Mater Chem B; 2015 Sep; 3(36):7262-7270. PubMed ID: 32262834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications.
    Mohajeri M; Eskandari M; Ghazali ZS; Ghazali HS
    Biomed Phys Eng Express; 2022 Feb; 8(2):. PubMed ID: 35073537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bone Scaffolds Based on Degradable Vaterite/PEG-Composite Microgels.
    Stengelin E; Kuzmina A; Beltramo GL; Koziol MF; Besch L; Schröder R; Unger RE; Tremel W; Seiffert S
    Adv Healthc Mater; 2020 Jun; 9(11):e1901820. PubMed ID: 32378355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Responsive Hyaluronic Acid-Ethylacrylamide Microgels Fabricated Using Microfluidics Technique.
    Wanselius M; Rodler A; Searle SS; Abrahmsén-Alami S; Hansson P
    Gels; 2022 Sep; 8(9):. PubMed ID: 36135299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlled-release of antacids from biopolymer microgels under simulated gastric conditions: Impact of bead dimensions, pore size, and alginate/pectin ratio.
    Chen F; Zhang Z; Deng Z; Zhang R; Fan G; Ma D; McClements DJ
    Food Res Int; 2018 Apr; 106():745-751. PubMed ID: 29579983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodegradable zwitterionic poly(carboxybetaine) microgel for sustained delivery of antibodies with extended stability and preserved function.
    Erfani A; Hanna A; Zarrintaj P; Manouchehri S; Weigandt K; Aichele CP; Ramsey JD
    Soft Matter; 2021 Jun; 17(21):5349-5361. PubMed ID: 33954314
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell-laden microfluidic microgels for tissue regeneration.
    Jiang W; Li M; Chen Z; Leong KW
    Lab Chip; 2016 Nov; 16(23):4482-4506. PubMed ID: 27797383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D-Printed Concentration-Controlled Microfluidic Chip with Diffusion Mixing Pattern for the Synthesis of Alginate Drug Delivery Microgels.
    Cai S; Shi H; Li G; Xue Q; Zhao L; Wang F; Hu B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31614763
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation and characterization of carboxymethyl starch microgel with different crosslinking densities.
    Zhang B; Wei B; Hu X; Jin Z; Xu X; Tian Y
    Carbohydr Polym; 2015 Jun; 124():245-53. PubMed ID: 25839818
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Producing mixed-soy protein adsorption layers on alginate microgels to controlled-release β-carotene.
    Jin H; Wang L; Yang S; Wen J; Zhang Y; Jiang L; Sui X
    Food Res Int; 2023 Feb; 164():112319. PubMed ID: 36737912
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of polymeric microgels using reflux-precipitation polymerization and its application for phosphoprotein enrichment.
    Wang F; Zhang Y; Yang P; Jin S; Yu M; Guo J; Wang C
    J Mater Chem B; 2014 May; 2(17):2575-2582. PubMed ID: 32261424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.