BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 29375801)

  • 1. Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys.
    Barnas A; Newman R; Felege CJ; Corcoran MP; Hervey SD; Stechmann TJ; Rockwell RF; Ellis-Felege SN
    Ecol Evol; 2018 Jan; 8(2):1328-1338. PubMed ID: 29375801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population census of a large common tern colony with a small unmanned aircraft.
    Chabot D; Craik SR; Bird DM
    PLoS One; 2015; 10(4):e0122588. PubMed ID: 25874997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.
    Mulero-Pázmány M; Jenni-Eiermann S; Strebel N; Sattler T; Negro JJ; Tablado Z
    PLoS One; 2017; 12(6):e0178448. PubMed ID: 28636611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.
    McEvoy JF; Hall GP; McDonald PG
    PeerJ; 2016; 4():e1831. PubMed ID: 27020132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of territoriality and species interactions from spatial point-pattern analyses of subarctic-nesting geese.
    Reiter ME; Andersen DE
    PLoS One; 2013; 8(12):e81029. PubMed ID: 24312520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay.
    Barnas AF; Darby BJ; Vandeberg GS; Rockwell RF; Ellis-Felege SN
    PLoS One; 2019; 14(8):e0217049. PubMed ID: 31398201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of colonial Peruvian guano birds to flying UAVs: effects and feasibility for implementing new population monitoring methods.
    Irigoin-Lovera C; Luna DM; Acosta DA; Zavalaga CB
    PeerJ; 2019; 7():e8129. PubMed ID: 31844569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the disturbance potential of small unoccupied aircraft systems (UAS) on gray seals (
    Arona L; Dale J; Heaslip SG; Hammill MO; Johnston DW
    PeerJ; 2018; 6():e4467. PubMed ID: 29576950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behaviour reactions of bottlenose dolphins (Tursiops truncatus) to multirotor Unmanned Aerial Vehicles (UAVs).
    Fettermann T; Fiori L; Bader M; Doshi A; Breen D; Stockin KA; Bollard B
    Sci Rep; 2019 Jun; 9(1):8558. PubMed ID: 31189946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Terrestrial mammalian wildlife responses to Unmanned Aerial Systems approaches.
    Bennitt E; Bartlam-Brooks HLA; Hubel TY; Wilson AM
    Sci Rep; 2019 Feb; 9(1):2142. PubMed ID: 30765800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A colonial-nesting seabird shows no heart-rate response to drone-based population surveys.
    Geldart EA; Barnas AF; Semeniuk CAD; Gilchrist HG; Harris CM; Love OP
    Sci Rep; 2022 Nov; 12(1):18804. PubMed ID: 36335150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unmanned aerial survey of elephants.
    Vermeulen C; Lejeune P; Lisein J; Sawadogo P; Bouché P
    PLoS One; 2013; 8(2):e54700. PubMed ID: 23405088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds.
    Bevan E; Whiting S; Tucker T; Guinea M; Raith A; Douglas R
    PLoS One; 2018; 13(3):e0194460. PubMed ID: 29561901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially Targeted Biological Control of Mile-a-Minute Weed Using Rhinoncomimus latipes (Coleoptera: Curculionidae) and an Unmanned Aircraft System.
    Kim J; Huebner CD; Reardon R; Park YL
    J Econ Entomol; 2021 Oct; 114(5):1889-1895. PubMed ID: 34180508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral responses of blue-winged teal and northern shoveler to unmanned aerial vehicle surveys.
    Ryckman MD; Kemink K; Felege CJ; Darby B; Vandeberg GS; Ellis-Felege SN
    PLoS One; 2022; 17(1):e0262393. PubMed ID: 35045108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Response and Injury Resulting from Head Impacts with Unmanned Aircraft Systems.
    Stark DB; Willis AK; Eshelman Z; Kang YS; Ramachandra R; Bolte JH; McCrink M
    Stapp Car Crash J; 2019 Nov; 63():29-64. PubMed ID: 32311051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ranges of Injury Risk Associated with Impact from Unmanned Aircraft Systems.
    Campolettano ET; Bland ML; Gellner RA; Sproule DW; Rowson B; Tyson AM; Duma SM; Rowson S
    Ann Biomed Eng; 2017 Dec; 45(12):2733-2741. PubMed ID: 28913606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating satellite and unmanned aircraft system (UAS) imagery to model livestock population dynamics in the Longbao Wetland National Nature Reserve, China.
    Wang D; Song Q; Liao X; Ye H; Shao Q; Fan J; Cong N; Xin X; Yue H; Zhang H
    Sci Total Environ; 2020 Dec; 746():140327. PubMed ID: 32768776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of turkey vultures to unmanned aircraft systems vary by platform.
    Pfeiffer MB; Blackwell BF; Seamans TW; Buckingham BN; Hoblet JL; Baumhardt PE; DeVault TL; Fernández-Juricic E
    Sci Rep; 2021 Nov; 11(1):21655. PubMed ID: 34737377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drone Surveys Do Not Increase Colony-wide Flight Behaviour at Waterbird Nesting Sites, But Sensitivity Varies Among Species.
    Barr JR; Green MC; DeMaso SJ; Hardy TB
    Sci Rep; 2020 Mar; 10(1):3781. PubMed ID: 32123223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.