These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29375926)

  • 1. Design and Control of Motion Compensation Cardiac Catheters.
    Kesner SB; Howe RD
    IEEE Int Conf Robot Autom; 2010 May; 2010():1059-1065. PubMed ID: 29375926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position Control of Motion Compensation Cardiac Catheters.
    Kesner SB; Howe RD
    IEEE Trans Robot; 2011 Jul; PP(99):1-11. PubMed ID: 21874124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force Control of Flexible Catheter Robots for Beating Heart Surgery.
    Kesner SB; Howe RD
    IEEE Int Conf Robot Autom; 2011; ():1589-1594. PubMed ID: 21874164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic Motion Compensation for Beating Heart Intracardiac Surgery.
    Yuen SG; Kettler DT; Novotny PM; Plowes RD; Howe RD
    Int J Rob Res; 2009 Oct; 28(10):1355-1372. PubMed ID: 20436927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic tissue tracking for beating heart mitral valve surgery.
    Yuen SG; Vasilyev NV; del Nido PJ; Howe RD
    Med Image Anal; 2013 Dec; 17(8):1236-42. PubMed ID: 23973122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A minimally invasive robotic surgery approach to perform totally endoscopic coronary artery bypass on beating hearts.
    Alamdar A; Hanife S; Farahmand F; Behzadipour S; Mirbagheri A
    Med Hypotheses; 2019 Mar; 124():76-83. PubMed ID: 30798923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation for Unconstrained Catheter Shaft Motion in Cardiac Catheters.
    Degirmenci A; Loschak PM; Tschabrunn CM; Anter E; Howe RD
    IEEE Int Conf Robot Autom; 2016 May; 2016():4436-4442. PubMed ID: 27525170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discriminating Tissue Stiffness with a Haptic Catheter: Feeling the Inside of the Beating Heart.
    Kesner SB; Howe RD
    World Haptics Conf; 2011; 2011():13-18. PubMed ID: 25285321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatically steering cardiac catheters in vivo with respiratory motion compensation.
    Loschak PM; Degirmenci A; Tschabrunn CM; Anter E; Howe RD
    Int J Rob Res; 2020 Apr; 39(5):586-597. PubMed ID: 32661450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards Characterization and Adaptive Compensation of Backlash in a Novel Robotic Catheter System for Cardiovascular Interventions.
    Omisore OM; Han SP; Ren LX; Wang GS; Ou FL; Li H; Wang L
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):824-838. PubMed ID: 29994773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic mitral valve surgery.
    Kypson AP; Nifong LW; Chitwood WR
    Surg Clin North Am; 2003 Dec; 83(6):1387-403. PubMed ID: 14712874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery.
    Sun Z; Wang Z; Phee SJ
    Comput Methods Programs Biomed; 2015 Apr; 119(2):77-87. PubMed ID: 25819033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model predictive control of a robotically actuated delivery sheath for beating heart compensation.
    Vrooijink GJ; Denasi A; Grandjean JG; Misra S
    Int J Rob Res; 2017 Feb; 36(2):193-209. PubMed ID: 30814767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model.
    Liu C; Moreira P; Zemiti N; Poignet P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7054-8. PubMed ID: 22255963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive fuzzy control for tendon-sheath actuated bending-tip system with unknown friction for robotic flexible endoscope.
    Ren F; Wang X; Yu N; Han J
    Front Neurosci; 2024; 18():1330634. PubMed ID: 38595970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion compensated controller for a tendon-sheath-driven flexible endoscopic robot.
    Xu W; Poon CC; Yam Y; Chiu PW
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27045665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force Tracking with Feed-Forward Motion Estimation for Beating Heart Surgery.
    Yuen SG; Perrin DP; Vasilyev NV; Del Nido PJ; Howe RD
    IEEE Trans Robot; 2010 Aug; 26(5):888-896. PubMed ID: 29375279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient 3D tracking for motion compensation in beating heart surgery.
    Richa R; Poignet P; Liu C
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):684-91. PubMed ID: 18982664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.