These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29376169)

  • 1. Kinetics of autoignition: a simple intuitive interpretation and its relation to the Livengood-Wu integral.
    Miyoshi A
    Phys Chem Chem Phys; 2018 Apr; 20(16):10762-10769. PubMed ID: 29376169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying the influence of single droplets on fuel/air ignition in a high-pressure shock tube.
    Niegemann P; Herzler J; Fikri M; Schulz C
    Rev Sci Instrum; 2020 Oct; 91(10):105107. PubMed ID: 33138609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-fuel surrogate chemical kinetic mechanisms for real world applications.
    Westbrook CK; Mehl M; Pitz WJ; Kukkadapu G; Wagnon S; Zhang K
    Phys Chem Chem Phys; 2018 Apr; 20(16):10588-10606. PubMed ID: 29392270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Trends in Autoignition of Biofuels: Homologous Series of Oxygenated C5 Molecules.
    Bu L; Ciesielski PN; Robichaud DJ; Kim S; McCormick RL; Foust TD; Nimlos MR
    J Phys Chem A; 2017 Jul; 121(29):5475-5486. PubMed ID: 28678503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of knock probability in an internal combustion engine.
    Di H; Shen T
    Phys Rev E; 2018 Jul; 98(1-1):012102. PubMed ID: 30110723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology for the investigation of ignition near hot surfaces in a high-pressure shock tube.
    Niegemann P; Fikri M; Wlokas I; Röder M; Schulz C
    Rev Sci Instrum; 2018 May; 89(5):055111. PubMed ID: 29864877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio study of key branching reactions in biodiesel and Fischer-Tropsch fuels.
    Davis AC; Francisco JS
    J Am Chem Soc; 2011 Nov; 133(47):19110-24. PubMed ID: 21805995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.
    Marculescu C; Cenuşă V; Alexe F
    Waste Manag; 2016 Jan; 47(Pt A):133-40. PubMed ID: 26164851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dynamical instability of spark-ignited engines.
    Kantor JC
    Science; 1984 Jun; 224(4654):1233-5. PubMed ID: 17819493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directly measuring reaction kinetics of ˙QOOH--a crucial but elusive intermediate in hydrocarbon autoignition.
    Zádor J; Huang H; Welz O; Zetterberg J; Osborn DL; Taatjes CA
    Phys Chem Chem Phys; 2013 Jul; 15(26):10753-60. PubMed ID: 23689671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoignitions and detonations in engines and ducts.
    Bradley D
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):689-714. PubMed ID: 22213665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Study on the Autoignition of Biogas in Moderate or Intense Low Oxygen Dilution Nonpremixed Combustion Systems.
    Vasavan A; de Goey P; van Oijen J
    Energy Fuels; 2018 Aug; 32(8):8768-8780. PubMed ID: 30147233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol oxidation: kinetics of the alpha-hydroxyethyl radical + O2 reaction.
    da Silva G; Bozzelli JW; Liang L; Farrell JT
    J Phys Chem A; 2009 Aug; 113(31):8923-33. PubMed ID: 19594149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Radical-Induced Ignition in Combustion Systems.
    Liang W; Law CK
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():199-217. PubMed ID: 30901258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.
    Hoyermann K; Mauß F; Olzmann M; Welz O; Zeuch T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18128-18146. PubMed ID: 28681879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-Chamber Ignition Mechanism: Simulations of Transient Autoignition in a Mixing Layer Between Reactants and Partially-Burnt Products.
    Sidey JAM; Mastorakos E
    Flow Turbul Combust; 2018; 101(4):1093-1102. PubMed ID: 30613188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.
    Neto AF; Lopes FS; Carvalho EV; Huda MN; Neto AM; Machado NT
    J Mol Model; 2015 Oct; 21(10):267. PubMed ID: 26386958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modeling of methyl butanoate in shock tube.
    Huynh LK; Lin KC; Violi A
    J Phys Chem A; 2008 Dec; 112(51):13470-80. PubMed ID: 19035670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of models for the low temperature combustion of alkanes through interpretation of pressure-temperature ignition diagrams.
    Hughes KJ; Griffiths JF; Fairweather M; Tomlin AS
    Phys Chem Chem Phys; 2006 Jul; 8(27):3197-210. PubMed ID: 16902712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms and kinetics of granulated sewage sludge combustion.
    Kijo-Kleczkowska A; Środa K; Kosowska-Golachowska M; Musiał T; Wolski K
    Waste Manag; 2015 Dec; 46():459-71. PubMed ID: 26306758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.