BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29376179)

  • 1. Kinetic and thermodynamic analysis of triplex formation between peptide nucleic acid and double-stranded RNA.
    Sato T; Sakamoto N; Nishizawa S
    Org Biomol Chem; 2018 Feb; 16(7):1178-1187. PubMed ID: 29376179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic, thermodynamic and kinetic analysis of selective triplex formation by peptide nucleic acid with double-stranded RNA over its DNA counterpart.
    Sato T; Sato Y; Nishizawa S
    Biopolymers; 2022 Jan; 113(1):e23474. PubMed ID: 34478151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplex-forming PNA modified with unnatural nucleobases: the role of protonation entropy in RNA binding.
    Endoh T; Annoni C; Hnedzko D; Rozners E; Sugimoto N
    Phys Chem Chem Phys; 2016 Nov; 18(47):32002-32006. PubMed ID: 27869270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the Alkyl Linker of TO Base Surrogate in Triplex-Forming PNA for Enhanced Binding to Double-Stranded RNA.
    Sato T; Sato Y; Nishizawa S
    Chemistry; 2017 Mar; 23(17):4079-4088. PubMed ID: 27897343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triplex-Forming Peptide Nucleic Acid Probe Having Thiazole Orange as a Base Surrogate for Fluorescence Sensing of Double-stranded RNA.
    Sato T; Sato Y; Nishizawa S
    J Am Chem Soc; 2016 Aug; 138(30):9397-400. PubMed ID: 27442229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA.
    Kuhn H; Demidov VV; Nielsen PE; Frank-Kamenetskii MD
    J Mol Biol; 1999 Mar; 286(5):1337-45. PubMed ID: 10064701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural diversity of target-specific homopyrimidine peptide nucleic acid-dsDNA complexes.
    Bentin T; Hansen GI; Nielsen PE
    Nucleic Acids Res; 2006; 34(20):5790-9. PubMed ID: 17053099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids.
    Kotikam V; Kennedy SD; MacKay JA; Rozners E
    Chemistry; 2019 Mar; 25(17):4367-4372. PubMed ID: 30746843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of highly effective triplex formation between a small molecule-peptide nucleic acid conjugate probe and the influenza A virus RNA promoter region at neutral pH.
    Okeke CU; Miura H; Sato Y; Nishizawa S
    Org Biomol Chem; 2023 Apr; 21(16):3402-3410. PubMed ID: 37010004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature and ionic strength on the dissociation kinetics and lifetime of PNA-DNA triplexes.
    Kosaganov YN; Stetsenko DA; Lubyako EN; Kvitko NP; Lazurkin YS; Nielsen PE
    Biochemistry; 2000 Sep; 39(38):11742-7. PubMed ID: 10995242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA.
    Brodyagin N; Hnedzko D; MacKay JA; Rozners E
    Methods Mol Biol; 2020; 2105():157-172. PubMed ID: 32088869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs.
    Patil KM; Toh DK; Yuan Z; Meng Z; Shu Z; Zhang H; Ong AAL; Krishna MS; Lu L; Lu Y; Chen G
    Nucleic Acids Res; 2018 Sep; 46(15):7506-7521. PubMed ID: 30011039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of double-stranded RNA by guanidine-modified peptide nucleic acids.
    Gupta P; Muse O; Rozners E
    Biochemistry; 2012 Jan; 51(1):63-73. PubMed ID: 22146072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase.
    Ong AAL; Toh DK; Patil KM; Meng Z; Yuan Z; Krishna MS; Devi G; Haruehanroengra P; Lu Y; Xia K; Okamura K; Sheng J; Chen G
    Biochemistry; 2019 Mar; 58(10):1319-1331. PubMed ID: 30775913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triplex-Forming Peptide Nucleic Acids with Extended Backbones.
    Kumar V; Brodyagin N; Rozners E
    Chembiochem; 2020 Dec; 21(23):3410-3416. PubMed ID: 32697857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-specific recognition of structured RNA by triplex-forming peptide nucleic acids.
    Hnedzko D; Rozners E
    Methods Enzymol; 2019; 623():401-416. PubMed ID: 31239055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplex formation of chemically modified homopyrimidine oligonucleotides: thermodynamic and kinetic studies.
    Torigoe H; Shimizume R; Sarai A; Shindo H
    Biochemistry; 1999 Nov; 38(44):14653-9. PubMed ID: 10545190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA.
    Zhan X; Deng L; Chen G
    Biopolymers; 2022 Feb; 113(2):e23476. PubMed ID: 34581432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide nucleic acid Hoogsteen strand linker design for major groove recognition of DNA thymine bases.
    Topham CM; Smith JC
    J Comput Aided Mol Des; 2021 Mar; 35(3):355-369. PubMed ID: 33624202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.