These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 29376321)
41. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content]. Wu J; Chen TS; Pan LX Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1961-6. PubMed ID: 26717760 [TBL] [Abstract][Full Text] [Related]
42. Assessment of wetland/upland vegetation communities and evaluation of soil-plant contamination by polycyclic aromatic hydrocarbons and trace metals in regions near oil sands mining in Alberta. Boutin C; Carpenter DJ Sci Total Environ; 2017 Jan; 576():829-839. PubMed ID: 27816881 [TBL] [Abstract][Full Text] [Related]
43. Evaluating potential of leaf reflectance spectra to monitor plant genetic variation. Li C; Czyż EA; Halitschke R; Baldwin IT; Schaepman ME; Schuman MC Plant Methods; 2023 Oct; 19(1):108. PubMed ID: 37833725 [TBL] [Abstract][Full Text] [Related]
44. Hyperspectral imaging for small-scale analysis of Hordeum vulgare L. leaves under the benzo[a]pyrene effect. Dmitriev P; Kozlovsky B; Minkina T; Rajput VD; Dudnikova T; Barbashev A; Ignatova MA; Kapralova OA; Varduni TV; Tokhtar VK; Tarik EP; Akça İ; Sushkova S Environ Sci Pollut Res Int; 2023 Nov; 30(55):116449-116458. PubMed ID: 35174459 [TBL] [Abstract][Full Text] [Related]
45. Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy. Falcioni R; Gonçalves JVF; de Oliveira KM; de Oliveira CA; Reis AS; Crusiol LGT; Furlanetto RH; Antunes WC; Cezar E; de Oliveira RB; Chicati ML; Demattê JAM; Nanni MR Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836163 [TBL] [Abstract][Full Text] [Related]
46. [Soil taxonomy on the basis of reflectance spectral characteristics]. Liu HJ; Zhang B; Zhang YZ; Song KS; Wang ZM; Li F; Hu MG Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Mar; 28(3):624-8. PubMed ID: 18536428 [TBL] [Abstract][Full Text] [Related]
47. The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition. Carvalho S; van der Putten WH; Hol WH Front Plant Sci; 2016; 7():759. PubMed ID: 27375633 [TBL] [Abstract][Full Text] [Related]
48. Measuring land surface temperature, near-infrared and short-wave infrared reflectance for estimation of water availability in vegetation. Holzman M; Rivas R; Bayala M; Pasapera J MethodsX; 2021; 8():101172. PubMed ID: 33354519 [TBL] [Abstract][Full Text] [Related]
49. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra. Peng Y; Xiong X; Adhikari K; Knadel M; Grunwald S; Greve MH PLoS One; 2015; 10(11):e0142295. PubMed ID: 26555071 [TBL] [Abstract][Full Text] [Related]
50. [Quantitative relationships between leaf area index and canopy reflectance spectra of wheat]. Li Y; Zhu Y; Dai T; Tian Y; Cao W Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1443-7. PubMed ID: 17066700 [TBL] [Abstract][Full Text] [Related]
52. [Study of photosynthetic characteristics of transgenic barley based on reflectance of single leaf]. Sun CX; Yuan F; Zhang YL; Chen ZH; Chen LJ; Wu ZJ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):204-8. PubMed ID: 22497160 [TBL] [Abstract][Full Text] [Related]
53. Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. Demattê JAM; Horák-Terra I; Beirigo RM; Terra FDS; Marques KPP; Fongaro CT; Silva AC; Vidal-Torrado P J Environ Manage; 2017 Jul; 197():50-62. PubMed ID: 28324781 [TBL] [Abstract][Full Text] [Related]
54. [Hyperspectral inversion models on verticillium wilt severity of cotton leaf]. Jing X; Huang WJ; Wang JH; Wang JD; Wang KR Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3348-52. PubMed ID: 20210167 [TBL] [Abstract][Full Text] [Related]
56. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Cucci C; Delaney JK; Picollo M Acc Chem Res; 2016 Oct; 49(10):2070-2079. PubMed ID: 27677864 [TBL] [Abstract][Full Text] [Related]
57. Estimating yields of salt- and water-stressed forages with remote sensing in the visible and near infrared. Poss JA; Russell WB; Grieve CM J Environ Qual; 2006; 35(4):1060-71. PubMed ID: 16738391 [TBL] [Abstract][Full Text] [Related]
58. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Ayala-Silva T; Beyl CA Adv Space Res; 2005; 35(2):305-17. PubMed ID: 15934211 [TBL] [Abstract][Full Text] [Related]
59. [MTCARI: A kind of vegetation index monitoring vegetation leaf chlorophyll content based on hyperspectral remote sensing]. Meng QY; Dong H; Qin QM; Wang JL; Zhao JH Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Aug; 32(8):2218-22. PubMed ID: 23156785 [TBL] [Abstract][Full Text] [Related]
60. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]