These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29376351)

  • 1. Effect of Transition Metal Fragments on the Reverse Fritsch-Buttenberg-Wiechell Type Ring Contraction Reaction of Metallabenzynes to Metal-Carbene Complexes.
    Anusha C; De S; Parameswaran P
    J Phys Chem A; 2018 Mar; 122(8):2160-2167. PubMed ID: 29376351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring contraction of six-membered metallabenzynes to five-membered metal-carbene complexes: a comparison with organic analogues.
    Anusha C; De S; Parameswaran P
    Dalton Trans; 2013 Oct; 42(41):14733-41. PubMed ID: 23907353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ring contraction of metallabenzooxirene to metal carbonyl complexes - a comparative study with the Wolff rearrangement of oxirene and benzooxirene.
    Anusha C; De S; Parameswaran P
    Dalton Trans; 2017 Oct; 46(40):13974-13982. PubMed ID: 28975166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the alkylidene carbene-strained alkyne equilibrium in polycyclic systems via the Fritsch-Buttenberg-Wiechell rearrangement.
    Anderson TE; Thamattoor DM; Phillips DL
    Nat Commun; 2024 Sep; 15(1):8313. PubMed ID: 39333083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, structure, and reactivity of iridium perfluorocarbene complexes: regio- and stereo-specific addition of HCl across a metal carbon double bond.
    Yuan J; Bourgeois CJ; Rheingold AL; Hughes RP
    Dalton Trans; 2015 Dec; 44(45):19528-42. PubMed ID: 26211437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fritsch-Buttenberg-Wiechell rearrangement of magnesium alkylidene carbenoids leading to the formation of alkynes.
    Kimura T; Sekiguchi K; Ando A; Imafuji A
    Beilstein J Org Chem; 2021; 17():1352-1359. PubMed ID: 34136014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Experimental and Computational Investigation of (α-Methylbenzylidene)carbene.
    Yang X; Languet K; Thamattoor DM
    J Org Chem; 2016 Sep; 81(18):8194-8. PubMed ID: 27537681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic Alkyl(amino) Carbene Stabilized Complexes with Low Coordinate Metals of Enduring Nature.
    Roy S; Mondal KC; Roesky HW
    Acc Chem Res; 2016 Mar; 49(3):357-69. PubMed ID: 26925983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot formation and derivatization of di- and triynes based on the Fritsch-Buttenberg-Wiechell rearrangement.
    Luu T; Morisaki Y; Cunningham N; Tykwinski RR
    J Org Chem; 2007 Dec; 72(25):9622-9. PubMed ID: 17999532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fritsch-Buttenberg-Wiechell rearrangement: modern applications for an old reaction.
    Jahnke E; Tykwinski RR
    Chem Commun (Camb); 2010 May; 46(19):3235-49. PubMed ID: 20393642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-metal complexes containing parent phosphine or phosphinyl ligands and their use as precursors for phosphide nanoparticles.
    Bauer S; Hunger C; Bodensteiner M; Ojo WS; Cros-Gagneux A; Chaudret B; Nayral C; Delpech F; Scheer M
    Inorg Chem; 2014 Nov; 53(21):11438-46. PubMed ID: 25329878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and bonding of transition metal-boryl compounds. Theoretical study of [(PH3)2(CO)ClOs-BR2] and [(PH3)2(CO)2ClOs-BR2] (BR2 = BH2, BF2, B(OH)2, B(OCH=CHO), Bcat).
    Giju KT; Bickelhaupt FM; Frenking G
    Inorg Chem; 2000 Oct; 39(21):4776-85. PubMed ID: 11196954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkyne migration in alkylidene carbenoid species: a new method of polyyne synthesis.
    Eisler S; Chahal N; McDonald R; Tykwinski RR
    Chemistry; 2003 Jun; 9(11):2542-50. PubMed ID: 12794896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fritsch-Buttenberg-Wiechell rearrangement in the aliphatic series.
    Rezaei H; Yamanoi S; Chemla F; Normant JF
    Org Lett; 2000 Feb; 2(4):419-21. PubMed ID: 10814340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na
    Singh RM; Nandini D; Bharadwaj KC; Gupta T; Singh RP
    Org Biomol Chem; 2017 Dec; 15(47):9979-9982. PubMed ID: 29167855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyyne synthesis using carbene/carbenoid rearrangements.
    Chalifoux WA; Tykwinski RR
    Chem Rec; 2006; 6(4):169-82. PubMed ID: 16902994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, structures, and properties of group 9- and group 10-group 6 heterodinuclear nitrosyl complexes.
    Arashiba K; Iizuka H; Matsukawa S; Kuwata S; Tanabe Y; Iwasaki M; Ishii Y
    Inorg Chem; 2008 May; 47(10):4264-74. PubMed ID: 18426202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of reduction on rhenium(I) complexes with binaphthyridine and biquinoline ligands: a spectroscopic and computational study.
    Howell SL; Scott SM; Flood AH; Gordon KC
    J Phys Chem A; 2005 Apr; 109(16):3745-53. PubMed ID: 16839043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of carbon-hydrogen bonds via 1,2-addition across M-X (X = OH or NH(2)) bonds of d(6) transition metals as a potential key step in hydrocarbon functionalization: a computational study.
    Cundari TR; Grimes TV; Gunnoe TB
    J Am Chem Soc; 2007 Oct; 129(43):13172-82. PubMed ID: 17918940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.