These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29376490)

  • 1. Targeting DNA Repair Systems in Antitubercular Drug Development.
    Minias A; Brzostek A; Dziadek J
    Curr Med Chem; 2019; 26(8):1494-1505. PubMed ID: 29376490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium sulfur metabolism and implications for novel drug targets.
    Zeng L; Shi T; Zhao Q; Xie J
    Cell Biochem Biophys; 2013 Mar; 65(2):77-83. PubMed ID: 23054909
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Sawicki R; Ginalska G
    Future Med Chem; 2019 Aug; 11(16):2193-2203. PubMed ID: 31538522
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Huszár S; Singh V; Polčicová A; Baráth P; Barrio MB; Lagrange S; Leblanc V; Nacy CA; Mizrahi V; Mikušová K
    Antimicrob Agents Chemother; 2017 Nov; 61(11):. PubMed ID: 28874370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unequal distribution of resistance-conferring mutations among Mycobacterium tuberculosis and Mycobacterium africanum strains from Ghana.
    Homolka S; Meyer CG; Hillemann D; Owusu-Dabo E; Adjei O; Horstmann RD; Browne EN; Chinbuah A; Osei I; Gyapong J; Kubica T; Ruesch-Gerdes S; Niemann S
    Int J Med Microbiol; 2010 Nov; 300(7):489-95. PubMed ID: 20538518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NapM, a new nucleoid-associated protein, broadly regulates gene expression and affects mycobacterial resistance to anti-tuberculosis drugs.
    Liu Y; Wang H; Cui T; Zhou X; Jia Y; Zhang H; He ZG
    Mol Microbiol; 2016 Jul; 101(1):167-81. PubMed ID: 27010232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron Acquisition Pathways as Targets for Antitubercular Drugs.
    Meneghetti F; Villa S; Gelain A; Barlocco D; Chiarelli LR; Pasca MR; Costantino L
    Curr Med Chem; 2016; 23(35):4009-4026. PubMed ID: 27281295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel inhibitor of isocitrate lyase as a potent antitubercular agent against both active and non-replicating Mycobacterium tuberculosis.
    Liu Y; Zhou S; Deng Q; Li X; Meng J; Guan Y; Li C; Xiao C
    Tuberculosis (Edinb); 2016 Mar; 97():38-46. PubMed ID: 26980494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the role of the transcriptional regulator VirS in low pH-induced responses of
    Singh S; Goswami N; Tyagi AK; Khare G
    J Biol Chem; 2019 Jun; 294(26):10055-10075. PubMed ID: 31126988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advancements in the development of anti-tuberculosis drugs.
    Chetty S; Ramesh M; Singh-Pillay A; Soliman ME
    Bioorg Med Chem Lett; 2017 Feb; 27(3):370-386. PubMed ID: 28017531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Mycobacterium tuberculosis dihydroneopterin aldolase as a molecular target for anti-tuberculosis drug development.
    Falcão VC; Villela AD; Rodrigues-Junior VS; Pissinate K; Eichler P; Pinto AF; Basso LA; Santos DS; Bizarro CV
    Biochem Biophys Res Commun; 2017 Apr; 485(4):814-819. PubMed ID: 28257847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis.
    Sriraman K; Nilgiriwala K; Saranath D; Chatterjee A; Mistry N
    Curr Microbiol; 2018 Apr; 75(4):394-400. PubMed ID: 29143876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis.
    Zhang YJ; Li XJ; Mi KX
    Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure, function, and regulation of Mycobacterium FtsZ.
    Hong W; Deng W; Xie J
    Cell Biochem Biophys; 2013 Mar; 65(2):97-105. PubMed ID: 22932926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug resistance mechanisms and novel drug targets for tuberculosis therapy.
    Islam MM; Hameed HMA; Mugweru J; Chhotaray C; Wang C; Tan Y; Liu J; Li X; Tan S; Ojima I; Yew WW; Nuermberger E; Lamichhane G; Zhang T
    J Genet Genomics; 2017 Jan; 44(1):21-37. PubMed ID: 28117224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogenic Gene Screening of Mycobacterium tuberculosis by Literature Data Mining and Information Pathway Enrichment Analysis.
    Xu G; Wen S; Pan Y; Zhang N; Wang Y
    Clin Lab; 2018 May; 64(5):677-686. PubMed ID: 29739036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection.
    Gorna AE; Bowater RP; Dziadek J
    Clin Sci (Lond); 2010 May; 119(5):187-202. PubMed ID: 20522025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Signal transduction and drug resistance in Mycobacterium tuberculosis--A review].
    Wang S; Feng Y; Zhang Z
    Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):971-6. PubMed ID: 26665593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.