These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2937653)

  • 1. Effects of cholesterol on the kinetics of mitochondrial ATPase.
    Calanni Rindina F; Baracca A; Solaini G; Rabbi A; Parenti Castelli G
    FEBS Lett; 1986 Mar; 198(2):353-6. PubMed ID: 2937653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol increase in mitochondria: its effect on inner-membrane functions, submitochondrial localization and ultrastructural morphology.
    Echegoyen S; Oliva EB; Sepulveda J; Díaz-Zagoya JC; Espinosa-García MT; Pardo JP; Martínez F
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):703-8. PubMed ID: 8435069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetic and structural changes of the mitochondrial F1-ATPase with temperature.
    Baracca A; Curatola G; Parenti Castelli G; Solaini G
    Biochem Biophys Res Commun; 1986 May; 136(3):891-8. PubMed ID: 2872889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in phospholipid-dependent (Na+ +K+)-ATPase activity due to lipid fluidity. Effects of cholesterol and Mg2+.
    Kimelberg HK
    Biochim Biophys Acta; 1975 Nov; 413(1):143-56. PubMed ID: 90
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of some lipophilic substances on mitochondrial ATPase.
    Casali C; Degli Esposti M; Bertoli E; Parenti-Castelli G; Lenaz G
    Boll Soc Ital Biol Sper; 1980 May; 56(10):996-1001. PubMed ID: 6449955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid protein interactions in mitochondria. VII. A comparison of the effects of lipid removal and lipid perturbation of the kinetic properties of mitochondrial ATPase.
    Parenti-Castelli G; Sechi AM; Landi L; Cabrini L; Mascarello S; Lenaz G
    Biochim Biophys Acta; 1979 Jul; 547(1):161-9. PubMed ID: 157158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial cholesterol content and membrane properties in porcine myocardial ischemia.
    Rouslin W; MacGee J; Gupte S; Wesselman A; Epps DE
    Am J Physiol; 1982 Feb; 242(2):H254-9. PubMed ID: 6461257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Conformational changes in soluble mitochondrial ATPase by the spin probe method].
    Kerimov TM; Mil'grom IaM; Kozlov IA; Ruuge EK
    Biokhimiia; 1978 Aug; 43(8):1525-31. PubMed ID: 153772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cholesterol and epicholesterol on the activity and temperature dependence of the purified, phospholipid-reconstituted (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B membranes.
    George R; McElhaney RN
    Biochim Biophys Acta; 1992 Jun; 1107(1):111-8. PubMed ID: 1535512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of the mitochondrial F1-ATPase epsilon subunit, enhancement of the ATPase activity of the IF1-F1 complex and IF1-binding dependence of the conformation of the epsilon subunit.
    Solaini G; Baracca A; Gabellieri E; Lenaz G
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):443-8. PubMed ID: 9359414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol as activator of ADP-ATP exchange in reconstituted liposomes and in mitochondria.
    Krämer R
    Biochim Biophys Acta; 1982 Dec; 693(2):296-304. PubMed ID: 6297555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A temperature-dependent structural change of mitochondrial ATPase.
    Parenti Castelli G; Baracca A; Fato R; Rabbi A
    Biochem Biophys Res Commun; 1983 Mar; 111(2):366-72. PubMed ID: 6220703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. F1-ATPase from different submitochondrial particles.
    Bruni A; Pitotti A; Palatini P; Dabbeni-Sala F; Bigon E
    Biochim Biophys Acta; 1979 Mar; 545(3):404-14. PubMed ID: 154927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the kinetics of the isolated mitochondrial ATPase using dinitrophenol as a probe.
    Harris DA; Dall-Larsen T; Klungsøyr L
    Biochim Biophys Acta; 1981 Apr; 635(2):412-8. PubMed ID: 6453612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane fluidity, cholesterol and allosteric transitions of membrane-bound Mg2+-ATPase, (Na+ + K+)-ATPase and acetylcholinesterase from rat erythrocytes.
    Bloj B; Morero RD; Farías RN
    FEBS Lett; 1973 Dec; 38(1):101-5. PubMed ID: 4272543
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis.
    Penefsky HS
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1589-93. PubMed ID: 2858849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on polypeptide composition, hydrolytic activity and proton conduction of mitochondrial FoF1 H+ ATPase in regenerating rat liver.
    Buckle M; Guerrieri F; Pazienza A; Papa S
    Eur J Biochem; 1986 Mar; 155(2):439-45. PubMed ID: 2869946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of phospholipid acyl chains in the activation of mitochondrial ATPase complex.
    Bruni A; van Dijck PW; de Gier J
    Biochim Biophys Acta; 1975 Oct; 406(2):315-28. PubMed ID: 127615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding properties of an intrinsic ATPase inhibitor and occurrence in yeast mitochondria of a protein factor which stabilizes and facilitates the binding of the inhibitor to F1F0-ATPase.
    Hashimoto T; Yoshida Y; Tagawa K
    J Biochem; 1983 Sep; 94(3):715-20. PubMed ID: 6227611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The non-catalytic nucleotide-binding site of mitochondrial ATPase is localised on the alpha-subunit(s) of factor F1.
    Kozlov IA; Milgrom YM
    Eur J Biochem; 1980 May; 106(2):457-62. PubMed ID: 6447065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.