These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29376681)

  • 1. Sign Switch of Gaussian Bending Modulus for Microemulsions: A Self-Consistent Field Analysis Exploring Scale Invariant Curvature Energies.
    Varadharajan R; Leermakers FAM
    Phys Rev Lett; 2018 Jan; 120(2):028003. PubMed ID: 29376681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bending rigidities of surfactant bilayers using self-consistent field theory.
    Leermakers FA
    J Chem Phys; 2013 Apr; 138(15):154109. PubMed ID: 23614414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physics of microemulsions extracted from modeling balanced tensionless surfactant-loaded liquid-liquid interfaces.
    Varadharajan R; Leermakers FAM
    J Chem Phys; 2020 Mar; 152(9):094902. PubMed ID: 33480717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evaluation of the saddle splay modulus of a liquid-liquid interface using the classical mean field lattice model.
    Leermakers FA
    J Chem Phys; 2013 Mar; 138(12):124103. PubMed ID: 23556705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Gaussian curvature elastic energy of intermediates in membrane fusion.
    Siegel DP
    Biophys J; 2008 Dec; 95(11):5200-15. PubMed ID: 18805927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscopic modelling of frustration in microemulsions.
    Duvail M; Dufrêche JF; Arleth L; Zemb T
    Phys Chem Chem Phys; 2013 May; 15(19):7133-41. PubMed ID: 23552459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and mechanical parameters of lipid bilayer membranes using a lattice refined self-consistent field theory.
    de Lange N; Kleijn JM; Leermakers FAM
    Phys Chem Chem Phys; 2021 Mar; 23(9):5152-5175. PubMed ID: 33624676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic properties of symmetric liquid-liquid interfaces.
    Varadharajan R; Leermakers FAM
    Phys Rev E; 2019 Dec; 100(6-1):062801. PubMed ID: 31962456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial properties of liquid-vapor interfaces with planar, spherical, and cylindrical geometries in mean field.
    Segovia-López JG; Romero-Rochín V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021601. PubMed ID: 16605344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the bending modulus of AOT based microemulsions induced by the incorporation of polymers in the water core.
    Kuttich B; Grefe AK; Stühn B
    Soft Matter; 2016 Aug; 12(30):6400-11. PubMed ID: 27416768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetric liquid-liquid interface with a nonzero spontaneous curvature.
    Leermakers FA; Barneveld PA; Sprakel J; Besseling NA
    Phys Rev Lett; 2006 Aug; 97(6):066103. PubMed ID: 17026181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creasing of flexible membranes at vanishing tension.
    Pezeshkian W; Ipsen JH
    Phys Rev E; 2021 Apr; 103(4):L041001. PubMed ID: 34005975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles.
    Claessens MM; van Oort BF; Leermakers FA; Hoekstra FA; Cohen Stuart MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011903. PubMed ID: 17677490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of oil on the curvature elastic properties of nonionic surfactant films: thermodynamics of balanced microemulsions.
    Balogh J; Kaper H; Olsson U; Wennerström H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041506. PubMed ID: 16711808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic properties of liquid-crystalline bilayers self-assembled from semiflexible-flexible diblock copolymers.
    Cai Y; Zhang P; Shi AC
    Soft Matter; 2019 Dec; 15(45):9215-9223. PubMed ID: 31642464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of the effective bending moduli of a fluid membrane: free-energy cost due to the reference-plane deformations.
    Nishiyama Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031901. PubMed ID: 14524797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: a mesoscopic modelling approach.
    Duvail M; Arleth L; Zemb T; Dufrêche JF
    J Chem Phys; 2014 Apr; 140(16):164711. PubMed ID: 24784303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet polydispersity and shape fluctuations in AOT [bis(2-ethylhexyl)sulfosuccinate sodium salt] microemulsions studied by contrast variation small-angle neutron scattering.
    Arleth L; Pedersen JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061406. PubMed ID: 11415103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropic stabilization and equilibrium size of lipid vesicles.
    Claessens MM; Leermakers FA; Hoekstra FA; Cohen Stuart MA
    Langmuir; 2007 May; 23(11):6315-20. PubMed ID: 17461604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.
    Yan C; Sagisaka M; James C; Rogers S; Alexander S; Eastoe J
    J Colloid Interface Sci; 2014 Dec; 435():112-8. PubMed ID: 25233224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.