These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 2937676)
21. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. McCall AL; Millington WR; Wurtman RJ Proc Natl Acad Sci U S A; 1982 Sep; 79(17):5406-10. PubMed ID: 6752947 [TBL] [Abstract][Full Text] [Related]
22. G-protein-mediated regulation of the insulin-responsive glucose transporter in isolated cardiac myocytes. Eckel J; Gerlach-Eskuchen E; Reinauer H Biochem J; 1990 Dec; 272(3):691-6. PubMed ID: 2176473 [TBL] [Abstract][Full Text] [Related]
23. Insulin binding, glucose oxidation, and methylglucose transport in isolated adipocytes from pregnant rats near term. Toyoda N; Murata K; Sugiyama Y Endocrinology; 1985 Mar; 116(3):998-1002. PubMed ID: 3882402 [TBL] [Abstract][Full Text] [Related]
24. Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats. Kahn BB; Rossetti L; Lodish HF; Charron MJ J Clin Invest; 1991 Jun; 87(6):2197-206. PubMed ID: 2040701 [TBL] [Abstract][Full Text] [Related]
25. Dysregulation of glucose transport in hearts of genetically obese (fa/fa) rats. Zaninetti D; Crettaz M; Jeanrenaud B Diabetologia; 1983 Dec; 25(6):525-9. PubMed ID: 6363180 [TBL] [Abstract][Full Text] [Related]
26. The acute regulation of glucose absorption, transport and metabolism in rat small intestine by insulin in vivo. Kellett GL; Jamal A; Robertson JP; Wollen N Biochem J; 1984 May; 219(3):1027-35. PubMed ID: 6234885 [TBL] [Abstract][Full Text] [Related]
27. Effects of diabetes on myocardial glucose transport system in rats: implications for diabetic cardiomyopathy. Garvey WT; Hardin D; Juhaszova M; Dominguez JH Am J Physiol; 1993 Mar; 264(3 Pt 2):H837-44. PubMed ID: 8456985 [TBL] [Abstract][Full Text] [Related]
28. Effect of heart work and insulin on the incorporation of [14C]glucose into hexose phosphates, uridine diphosphate glucose and glycogen in the normal and insulin-deficient perfused rat heart under working and non-working conditions. Das I; Chain ER Biochem J; 1976 Mar; 154(3):765-72. PubMed ID: 133675 [TBL] [Abstract][Full Text] [Related]
29. Effect of insulin on glucose utilization in epitrochlearis muscle of rats with streptozocin-induced NIDDM. Karl IE; Gavin JR; Levy J Diabetes; 1990 Sep; 39(9):1106-15. PubMed ID: 2200730 [TBL] [Abstract][Full Text] [Related]
30. Vanadate treatment increases the activity of glycolytic enzymes and raises fructose 2,6-bisphosphate concentration in hearts from diabetic rats. Sochor M; Kunjara S; Ali M; McLean P Biochem Int; 1992 Nov; 28(3):525-31. PubMed ID: 1482392 [TBL] [Abstract][Full Text] [Related]
31. Prevention of streptozotocin-induced alterations in the rat heart by 3-O-methyl glucose and insulin treatments. Ramanadham S; Young J; Tenner TE J Cardiovasc Pharmacol; 1987 Mar; 9(3):291-7. PubMed ID: 2437395 [TBL] [Abstract][Full Text] [Related]
33. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Kim JK; Wi JK; Youn JH Diabetes; 1996 Apr; 45(4):446-53. PubMed ID: 8603766 [TBL] [Abstract][Full Text] [Related]
34. Elevated free fatty acid levels inhibit glucose phosphorylation in slow-twitch rat skeletal muscle. Nolte LA; Galuska D; Martin IK; Zierath JR; Wallberg-Henriksson H Acta Physiol Scand; 1994 May; 151(1):51-9. PubMed ID: 8048336 [TBL] [Abstract][Full Text] [Related]
35. Relative contribution of glycogen synthesis and glycolysis to insulin-mediated glucose uptake. A dose-response euglycemic clamp study in normal and diabetic rats. Rossetti L; Giaccari A J Clin Invest; 1990 Jun; 85(6):1785-92. PubMed ID: 2189891 [TBL] [Abstract][Full Text] [Related]
36. Hexose transport modification of rat hearts during development of chronic diabetes. Whitfield CF; Osevala MA J Mol Cell Cardiol; 1984 Dec; 16(12):1091-9. PubMed ID: 6398369 [TBL] [Abstract][Full Text] [Related]
37. Inhibition of glucose transport into rat islet cells by immunoglobulins from patients with new-onset insulin-dependent diabetes mellitus. Johnson JH; Crider BP; McCorkle K; Alford M; Unger RH N Engl J Med; 1990 Mar; 322(10):653-9. PubMed ID: 2406597 [TBL] [Abstract][Full Text] [Related]
38. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. Rothman DL; Shulman RG; Shulman GI J Clin Invest; 1992 Apr; 89(4):1069-75. PubMed ID: 1556176 [TBL] [Abstract][Full Text] [Related]
39. Defect of an early event of glucose metabolism in skeletal muscle of the male Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a non-insulin-dependent diabetes mellitus (NIDDM) model. Sato T; Magata K; Koga N; Mitsumoto Y Biochem Biophys Res Commun; 1998 Apr; 245(2):378-81. PubMed ID: 9571158 [TBL] [Abstract][Full Text] [Related]
40. Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Trueblood N; Ramasamy R Am J Physiol; 1998 Jul; 275(1):H75-83. PubMed ID: 9688898 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]