These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 29376775)
1. Influence of ionic crosslinkers (Ca Sarker M; Izadifar M; Schreyer D; Chen X J Biomater Sci Polym Ed; 2018 Jul; 29(10):1126-1154. PubMed ID: 29376775 [TBL] [Abstract][Full Text] [Related]
2. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. Rajaram A; Schreyer DJ; Chen DX J Biomater Sci Polym Ed; 2015; 26(7):433-45. PubMed ID: 25661399 [TBL] [Abstract][Full Text] [Related]
3. Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches. Naghieh S; Karamooz-Ravari MR; Sarker MD; Karki E; Chen X J Mech Behav Biomed Mater; 2018 Apr; 80():111-118. PubMed ID: 29414466 [TBL] [Abstract][Full Text] [Related]
4. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture. Ning L; Xu Y; Chen X; Schreyer DJ J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482 [TBL] [Abstract][Full Text] [Related]
5. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
6. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. Kuo CK; Ma PX J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237 [TBL] [Abstract][Full Text] [Related]
7. Cell-laden alginate dialdehyde-gelatin hydrogels formed in 3D printed sacrificial gel. Dranseikiene D; Schrüfer S; Schubert DW; Reakasame S; Boccaccini AR J Mater Sci Mater Med; 2020 Mar; 31(3):31. PubMed ID: 32152812 [TBL] [Abstract][Full Text] [Related]
8. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025 [TBL] [Abstract][Full Text] [Related]
9. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. Naghieh S; Sarker MD; Abelseth E; Chen X J Mech Behav Biomed Mater; 2019 May; 93():183-193. PubMed ID: 30802775 [TBL] [Abstract][Full Text] [Related]
10. Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Low-Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation. Distler T; Ruther F; Boccaccini AR; Detsch R Macromol Biosci; 2019 Sep; 19(9):e1900245. PubMed ID: 31386277 [TBL] [Abstract][Full Text] [Related]
11. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Abouzeid RE; Khiari R; Salama A; Diab M; Beneventi D; Dufresne A Int J Biol Macromol; 2020 Oct; 160():538-547. PubMed ID: 32470581 [TBL] [Abstract][Full Text] [Related]
12. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
13. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications. Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810 [TBL] [Abstract][Full Text] [Related]
14. Friction of sodium alginate hydrogel scaffold fabricated by 3-D printing. Yang Q; Li J; Xu H; Long S; Li X J Biomater Sci Polym Ed; 2017 Apr; 28(5):459-469. PubMed ID: 28105891 [TBL] [Abstract][Full Text] [Related]
15. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X Adv Mater; 2015 Jul; 27(27):4035-40. PubMed ID: 26033288 [TBL] [Abstract][Full Text] [Related]
16. [In vitro study on injectable alginate-strontium hydrogel for bone tissue engineering]. Tu Y; Wu T; Ye A; Xu J; Guo F; Cheng X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1499-505. PubMed ID: 24640374 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948 [TBL] [Abstract][Full Text] [Related]
18. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Han Y; Zeng Q; Li H; Chang J Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407 [TBL] [Abstract][Full Text] [Related]
19. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three-dimensional cell culture in liver tissue engineering. Tong XF; Zhao FQ; Ren YZ; Zhang Y; Cui YL; Wang QS J Biomed Mater Res A; 2018 Dec; 106(12):3292-3302. PubMed ID: 30242952 [TBL] [Abstract][Full Text] [Related]
20. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. Kaygusuz H; Evingür GA; Pekcan Ö; von Klitzing R; Erim FB Int J Biol Macromol; 2016 Nov; 92():220-224. PubMed ID: 27381586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]