BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29376838)

  • 1. Model observer for assessing digital breast tomosynthesis for multi-lesion detection in the presence of anatomical noise.
    Wen G; Markey MK; Haygood TM; Park S
    Phys Med Biol; 2018 Feb; 63(4):045017. PubMed ID: 29376838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model observer design for multi-signal detection in the presence of anatomical noise.
    Wen G; Markey MK; Park S
    Phys Med Biol; 2017 Feb; 62(4):1396-1415. PubMed ID: 28114105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Channel Methods and Observer Models for the Task-Based Assessment of Multi-Projection Imaging in the Presence of Structured Anatomical Noise.
    Park S; Zhang G; Myers KJ
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1431-42. PubMed ID: 26742128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual-search observers for assessing tomographic x-ray image quality.
    Gifford HC; Liang Z; Das M
    Med Phys; 2016 Mar; 43(3):1563-75. PubMed ID: 26936739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
    Zeng R; Badano A; Myers KJ
    Phys Med Biol; 2017 Apr; 62(7):2598-2611. PubMed ID: 28151728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis.
    Wei J; Chan HP; Hadjiiski LM; Helvie MA; Lu Y; Zhou C; Samala R
    Med Phys; 2014 Apr; 41(4):041913. PubMed ID: 24694144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical performance metrics of 3D digital breast tomosynthesis compared with 2D digital mammography for breast cancer screening in community practice.
    Greenberg JS; Javitt MC; Katzen J; Michael S; Holland AE
    AJR Am J Roentgenol; 2014 Sep; 203(3):687-93. PubMed ID: 24918774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Case for Wide-Angle Breast Tomosynthesis.
    Samei E; Thompson J; Richard S; Bowsher J
    Acad Radiol; 2015 Jul; 22(7):860-9. PubMed ID: 25920335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A virtual trial framework for quantifying the detectability of masses in breast tomosynthesis projection data.
    Young S; Bakic PR; Myers KJ; Jennings RJ; Park S
    Med Phys; 2013 May; 40(5):051914. PubMed ID: 23635284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging.
    Gong X; Glick SJ; Liu B; Vedula AA; Thacker S
    Med Phys; 2006 Apr; 33(4):1041-52. PubMed ID: 16696481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach to digital breast tomosynthesis for simultaneous acquisition of 2D and 3D images.
    Vecchio S; Albanese A; Vignoli P; Taibi A
    Eur Radiol; 2011 Jun; 21(6):1207-13. PubMed ID: 21193910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human observer performance on in-plane digital breast tomosynthesis images: Effects of reconstruction filters and data acquisition angles on signal detection.
    Lee C; Han M; Baek J
    PLoS One; 2020; 15(3):e0229915. PubMed ID: 32163472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning denoising of digital breast tomosynthesis: Observer performance study of the effect on detection of microcalcifications in breast phantom images.
    Chan HP; Helvie MA; Gao M; Hadjiiski L; Zhou C; Garver K; Klein KA; McLaughlin C; Oudsema R; Rahman WT; Roubidoux MA
    Med Phys; 2023 Oct; 50(10):6177-6189. PubMed ID: 37145996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lesion detectability in 2D-mammography and digital breast tomosynthesis using different targets and observers.
    Elangovan P; Mackenzie A; Dance DR; Young KC; Wells K
    Phys Med Biol; 2018 May; 63(9):095014. PubMed ID: 29637906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model platform for optimizing a multiprojection breast imaging system.
    Chawla AS; Samei E; Saunders RS; Lo JY; Baker JA
    Med Phys; 2008 Apr; 35(4):1337-45. PubMed ID: 18491528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital breast tomosynthesis versus full-field digital mammography: comparison of the accuracy of lesion measurement and characterization using specimens.
    Seo N; Kim HH; Shin HJ; Cha JH; Kim H; Moon JH; Gong G; Ahn SH; Son BH
    Acta Radiol; 2014 Jul; 55(6):661-7. PubMed ID: 24005560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic approach to a channelized Hotelling model observer implementation for a physical phantom containing mass-like lesions: Application to digital breast tomosynthesis.
    Petrov D; Marshall NW; Young KC; Bosmans H
    Phys Med; 2019 Feb; 58():8-20. PubMed ID: 30824154
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.