BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29376842)

  • 1. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale.
    Zhang G; Tateno K; Sogawa T; Gotoh H
    Nanotechnology; 2018 Apr; 29(15):155202. PubMed ID: 29376842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature.
    Zhang G; Takiguchi M; Tateno K; Tawara T; Notomi M; Gotoh H
    Sci Adv; 2019 Feb; 5(2):eaat8896. PubMed ID: 30801006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled 1.1-1.6 μm luminescence in gold-free multi-stacked InAs/InP heterostructure nanowires.
    Zhang G; Tateno K; Birowosuto MD; Notomi M; Sogawa T; Gotoh H
    Nanotechnology; 2015 Mar; 26(11):115704. PubMed ID: 25712797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging the Gap between the Nanometer-Scale Bottom-Up and Micrometer-Scale Top-Down Approaches for Site-Defined InP/InAs Nanowires.
    Zhang G; Rainville C; Salmon A; Takiguchi M; Tateno K; Gotoh H
    ACS Nano; 2015 Nov; 9(11):10580-9. PubMed ID: 26348087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control and understanding of kink formation in InAs-InP heterostructure nanowires.
    Fahlvik Svensson S; Jeppesen S; Thelander C; Samuelson L; Linke H; Dick KA
    Nanotechnology; 2013 Aug; 24(34):345601. PubMed ID: 23900037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. InAs quantum dot in a needlelike tapered InP nanowire: a telecom band single photon source monolithically grown on silicon.
    Jaffal A; Redjem W; Regreny P; Nguyen HS; Cueff S; Letartre X; Patriarche G; Rousseau E; Cassabois G; Gendry M; Chauvin N
    Nanoscale; 2019 Nov; 11(45):21847-21855. PubMed ID: 31696191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.
    Schukfeh MI; Storm K; Hansen A; Thelander C; Hinze P; Beyer A; Weimann T; Samuelson L; Tornow M
    Nanotechnology; 2014 Nov; 25(46):465306. PubMed ID: 25360747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.
    Haffouz S; Zeuner KD; Dalacu D; Poole PJ; Lapointe J; Poitras D; Mnaymneh K; Wu X; Couillard M; Korkusinski M; Schöll E; Jöns KD; Zwiller V; Williams RL
    Nano Lett; 2018 May; 18(5):3047-3052. PubMed ID: 29616557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of molecular beam epitaxy growth in InAs/InP nanowire heterostructures.
    Haapamaki CM; Lapierre RR
    Nanotechnology; 2011 Aug; 22(33):335602. PubMed ID: 21788682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth dynamics of InAs/InP nanowire heterostructures by Au-assisted chemical beam epitaxy.
    Zannier V; Rossi F; Ercolani D; Sorba L
    Nanotechnology; 2019 Mar; 30(9):094003. PubMed ID: 30537697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-Mediated Bending of InP Nanowires through the Growth of an Asymmetric InAs Shell.
    Greenberg Y; Kelrich A; Cohen S; Kar-Narayan S; Ritter D; Calahorra Y
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31527424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InAs/InP radial nanowire heterostructures as high electron mobility devices.
    Jiang X; Xiong Q; Nam S; Qian F; Li Y; Lieber CM
    Nano Lett; 2007 Oct; 7(10):3214-8. PubMed ID: 17867718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density-controlled growth of vertical InP nanowires on Si(111) substrates.
    Jaffal A; Regreny P; Patriarche G; Chauvin N; Gendry M
    Nanotechnology; 2020 Aug; 31(35):354003. PubMed ID: 32428880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition.
    Ji X; Yang X; Yang T
    Nanoscale Res Lett; 2017 Dec; 12(1):428. PubMed ID: 28655220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman Spectroscopic Characterizations of Self-Catalyzed InP/InAs/InP One-Dimensional Nanostructures on InP(111)B Substrate using a Simple Substrate-Tilting Method.
    Park JH; Chung CH
    Nanoscale Res Lett; 2019 Nov; 14(1):355. PubMed ID: 31781969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zincblende InAs
    Bucci G; Zannier V; Rossi F; Musiał A; Boniecki J; Sęk G; Sorba L
    ACS Appl Mater Interfaces; 2024 May; 16(20):26491-26499. PubMed ID: 38729621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning gate imaging of quantum dots in 1D ultra-thin InAs/InP nanowires.
    Boyd EE; Storm K; Samuelson L; Westervelt RM
    Nanotechnology; 2011 May; 22(18):185201. PubMed ID: 21427464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and characterization of NixInAs/InAs nanowire heterostructures by solid source reaction.
    Chueh YL; Ford AC; Ho JC; Jacobson ZA; Fan Z; Chen CY; Chou LJ; Javey A
    Nano Lett; 2008 Dec; 8(12):4528-33. PubMed ID: 19367855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.