These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29377117)

  • 1. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
    Healy RW; Haile SS; Parkhurst DL; Charlton SR
    Ground Water; 2018 Sep; 56(5):810-815. PubMed ID: 29377117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D.
    Bailey RT; Morway ED; Niswonger RG; Gates TK
    Ground Water; 2013; 51(5):752-61. PubMed ID: 23131109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHT3D-UZF: A Reactive Transport Model for Variably-Saturated Porous Media.
    Wu MZ; Post VE; Salmon SU; Morway ED; Prommer H
    Ground Water; 2016 Jan; 54(1):23-34. PubMed ID: 25628017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of Solute Transport in the Vadose Zone into the "HYDRUS Package for MODFLOW".
    Beegum S; Šimůnek J; Szymkiewicz A; Sudheer KP; Nambi IM
    Ground Water; 2019 May; 57(3):392-408. PubMed ID: 30062703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange.
    Voytek EB; Drenkelfuss A; Day-Lewis FD; Healy R; Lane JW; Werkema D
    Ground Water; 2014; 52(2):298-302. PubMed ID: 23550960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical and experimental analysis of solute transport in heterogeneous porous media.
    Wu L; Gao B; Tian Y; Muñoz-Carpena R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):338-43. PubMed ID: 24279625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates.
    Atchley AL; Navarre-Sitchler AK; Maxwell RM
    J Contam Hydrol; 2014 Sep; 165():53-64. PubMed ID: 25113426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Capabilities in MT3D-USGS for Simulating Unsaturated-Zone Heat Transport.
    Morway ED; Feinstein DT; Hunt RJ; Healy RW
    Ground Water; 2023; 61(3):330-345. PubMed ID: 36116941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of reactive processes in an experiment with partially saturated bentonite.
    Xie M; Bauer S; Kolditz O; Nowak T; Shao H
    J Contam Hydrol; 2006 Feb; 83(1-2):122-47. PubMed ID: 16377027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.
    Marica F; Jofré SA; Mayer KU; Balcom BJ; Al TA
    J Contam Hydrol; 2011 Jul; 125(1-4):47-56. PubMed ID: 21669472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.
    Charlton SR; Parkhurst DL
    Ground Water; 2013; 51(4):623-8. PubMed ID: 23003216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of unsaturated flow and solute transport through waste rock at two experimental scales using temporal moments and numerical modeling.
    Blackmore S; Smith L; Ulrich Mayer K; Beckie RD
    J Contam Hydrol; 2014 Dec; 171():49-65. PubMed ID: 25461887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions.
    Yeh GT; Siegel MD; Li MH
    J Contam Hydrol; 2001 Feb; 47(2-4):379-90. PubMed ID: 11288590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE
    J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of non-reactive solute transport in fractured clayey till during variable flow rate and time.
    Jørgensen PR; Helstrup T; Urup J; Seifert D
    J Contam Hydrol; 2004 Feb; 68(3-4):193-216. PubMed ID: 14734246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using PHREEQC to simulate solute transport in fractured bedrock.
    Lipson DS; McCray JE; Thyne GD
    Ground Water; 2007; 45(4):468-72. PubMed ID: 17600577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Karst spring responses examined by process-based modeling.
    Birk S; Liedl R; Sauter M
    Ground Water; 2006; 44(6):832-6. PubMed ID: 17087755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MODFLOW/MT3DMS-based reactive multicomponent transport modeling.
    Prommer H; Barry DA; Zheng C
    Ground Water; 2003; 41(2):247-57. PubMed ID: 12656291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity.
    Sanz-Prat A; Lu C; Amos RT; Finkel M; Blowes DW; Cirpka OA
    J Contam Hydrol; 2016 Sep; 192():35-49. PubMed ID: 27343827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.