These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 29377461)
21. Impacts of Rotational Grazing on Soil Carbon in Native Grass-Based Pastures in Southern Australia. Sanderman J; Reseigh J; Wurst M; Young MA; Austin J PLoS One; 2015; 10(8):e0136157. PubMed ID: 26284658 [TBL] [Abstract][Full Text] [Related]
22. Changes in plant phosphorus demand and supply relationships in response to different grazing intensities affect the soil organic carbon stock of a temperate steppe. Song L; Gong J; Zhang Z; Zhang W; Zhang S; Dong J; Dong X; Hu Y; Liu Y Sci Total Environ; 2023 Jun; 876():163225. PubMed ID: 37011672 [TBL] [Abstract][Full Text] [Related]
23. A synthesis of the effect of grazing exclusion on carbon dynamics in grasslands in China. Hu Z; Li S; Guo Q; Niu S; He N; Li L; Yu G Glob Chang Biol; 2016 Apr; 22(4):1385-93. PubMed ID: 26485056 [TBL] [Abstract][Full Text] [Related]
24. Changes in nitrogen functional genes in soil profiles of grassland under long-term grazing prohibition in a semiarid area. Song Z; Wang J; Liu G; Zhang C Sci Total Environ; 2019 Jul; 673():92-101. PubMed ID: 30986685 [TBL] [Abstract][Full Text] [Related]
25. Deepened snow cover increases grassland soil carbon stocks by incorporating carbon inputs into deep soil layers. Deng M; Li P; Liu W; Chang P; Yang L; Wang Z; Wang J; Liu L Glob Chang Biol; 2023 Aug; 29(16):4686-4696. PubMed ID: 37246246 [TBL] [Abstract][Full Text] [Related]
26. Grassland degraded patchiness reduces microbial necromass content but increases contribution to soil organic carbon accumulation. Ao D; Wang B; Wang Y; Chen Y; Anum R; Feng C; Ji M; Liang C; An S Sci Total Environ; 2024 Nov; 951():175717. PubMed ID: 39197785 [TBL] [Abstract][Full Text] [Related]
27. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Luo R; Kuzyakov Y; Zhu B; Qiang W; Zhang Y; Pang X Glob Chang Biol; 2022 Jul; 28(13):4194-4210. PubMed ID: 35445477 [TBL] [Abstract][Full Text] [Related]
28. Grazing simplifies soil micro-food webs and decouples their relationships with ecosystem functions in grasslands. Wang B; Wu L; Chen D; Wu Y; Hu S; Li L; Bai Y Glob Chang Biol; 2020 Feb; 26(2):960-970. PubMed ID: 31529564 [TBL] [Abstract][Full Text] [Related]
30. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China. Li JP; Ma HB; Xie YZ; Wang KB; Qiu KY Sci Rep; 2019 Nov; 9(1):16088. PubMed ID: 31695091 [TBL] [Abstract][Full Text] [Related]
31. Effects of grazing on grassland soil carbon: a global review. McSherry ME; Ritchie ME Glob Chang Biol; 2013 May; 19(5):1347-57. PubMed ID: 23504715 [TBL] [Abstract][Full Text] [Related]
32. Grazing alters net ecosystem C fluxes and the global warming potential of a subtropical pasture. Gomez-Casanovas N; DeLucia NJ; Bernacchi CJ; Boughton EH; Sparks JP; Chamberlain SD; DeLucia EH Ecol Appl; 2018 Mar; 28(2):557-572. PubMed ID: 29280238 [TBL] [Abstract][Full Text] [Related]
33. Multi-decadal time series of remotely sensed vegetation improves prediction of soil carbon in a subtropical grassland. Wilson CH; Caughlin TT; Rifai SW; Boughton EH; Mack MC; Flory SL Ecol Appl; 2017 Jul; 27(5):1646-1656. PubMed ID: 28401672 [TBL] [Abstract][Full Text] [Related]
34. Moderate grazing increased carbon, nitrogen and phosphorus storage in plants and soil in the Eurasian meadow steppe ecosystem. Wang M; Zhang C; Chen S; Zhang Y; Yu T; Xue X; Wu L; Zhou W; Yun X; Yan R; Bai K Sci Total Environ; 2024 Mar; 914():169864. PubMed ID: 38185148 [TBL] [Abstract][Full Text] [Related]
35. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie. Manning GC; Baer SG; Blair JM Environ Manage; 2017 Dec; 60(6):1062-1075. PubMed ID: 28963572 [TBL] [Abstract][Full Text] [Related]
36. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Yang Z; Xiong W; Xu Y; Jiang L; Zhu E; Zhan W; He Y; Zhu D; Zhu Q; Peng C; Chen H Environ Monit Assess; 2016 Dec; 188(12):678. PubMed ID: 27858261 [TBL] [Abstract][Full Text] [Related]
37. Extracellular enzyme activity in grass litter varies with grazing history, environment and plant species in temperate grasslands. Chuan X; Carlyle CN; Bork EW; Chang SX; Hewins DB Sci Total Environ; 2020 Feb; 702():134562. PubMed ID: 31731122 [TBL] [Abstract][Full Text] [Related]
38. Labile carbon retention compensates for CO2 released by priming in forest soils. Qiao N; Schaefer D; Blagodatskaya E; Zou X; Xu X; Kuzyakov Y Glob Chang Biol; 2014 Jun; 20(6):1943-54. PubMed ID: 24293210 [TBL] [Abstract][Full Text] [Related]
39. [Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau.]. Wang ZQ; Du LL; Zhao M; Guo SL Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):716-722. PubMed ID: 29726175 [TBL] [Abstract][Full Text] [Related]
40. Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Reeder JD; Schuman GE; Morgan JA; Lecain DR Environ Manage; 2004 Apr; 33(4):485-95. PubMed ID: 15453402 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]