BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29377495)

  • 1. Cancer etiology: Variation in cancer risk among tissues is poorly explained by the number of gene mutations.
    López-Lázaro M
    Genes Chromosomes Cancer; 2018 Jun; 57(6):281-293. PubMed ID: 29377495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stem cell division theory of cancer.
    López-Lázaro M
    Crit Rev Oncol Hematol; 2018 Mar; 123():95-113. PubMed ID: 29482784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.
    Tomasetti C; Li L; Vogelstein B
    Science; 2017 Mar; 355(6331):1330-1334. PubMed ID: 28336671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions.
    Tomasetti C; Vogelstein B
    Science; 2015 Jan; 347(6217):78-81. PubMed ID: 25554788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Critical Examination of the "Bad Luck" Explanation of Cancer Risk.
    Rozhok AI; Wahl GM; DeGregori J
    Cancer Prev Res (Phila); 2015 Sep; 8(9):762-4. PubMed ID: 26122457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem cell replication, somatic mutations and role of randomness in the development of cancer.
    Perduca V; Alexandrov LB; Kelly-Irving M; Delpierre C; Omichessan H; Little MP; Vineis P; Severi G
    Eur J Epidemiol; 2019 May; 34(5):439-445. PubMed ID: 30623292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of Correlation between Stem-Cell Proliferation and Radiation- or Smoking-Associated Cancer Risk.
    Little MP; Hendry JH; Puskin JS
    PLoS One; 2016; 11(3):e0150335. PubMed ID: 27031507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is bad luck the main cause of cancer?
    Weinberg CR; Zaykin D
    J Natl Cancer Inst; 2015 Jul; 107(7):. PubMed ID: 25956173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substantial contribution of extrinsic risk factors to cancer development.
    Wu S; Powers S; Zhu W; Hannun YA
    Nature; 2016 Jan; 529(7584):43-7. PubMed ID: 26675728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related somatic mutations in the cancer genome.
    Milholland B; Auton A; Suh Y; Vijg J
    Oncotarget; 2015 Sep; 6(28):24627-35. PubMed ID: 26384365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying substantial carcinogenesis of genetic and environmental factors from measurement error in the number of stem cell divisions.
    Liu X; Yang J; Li H; Wang Q; Yu Y; Sun X; Si S; Hou L; Liu L; Yang F; Yan R; Yu Y; Fu Z; Lu Z; Li D; Xue H; Guo X; Xue F; Ji X
    BMC Cancer; 2022 Nov; 22(1):1194. PubMed ID: 36402971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An epidemiologic perspective on the stem cell hypothesis in human carcinogenesis.
    Schottenfeld D
    Cancer Epidemiol; 2017 Oct; 50(Pt A):132-136. PubMed ID: 28910694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model for cancer risk and accumulation of mutations caused by replication errors and external factors.
    Uchinomiya K; Tomita M
    PLoS One; 2023; 18(6):e0286499. PubMed ID: 37315031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of epigenetic mechanisms to variation in cancer risk among tissues.
    Klutstein M; Moss J; Kaplan T; Cedar H
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2230-2234. PubMed ID: 28193856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific mutation accumulation in human adult stem cells during life.
    Blokzijl F; de Ligt J; Jager M; Sasselli V; Roerink S; Sasaki N; Huch M; Boymans S; Kuijk E; Prins P; Nijman IJ; Martincorena I; Mokry M; Wiegerinck CL; Middendorp S; Sato T; Schwank G; Nieuwenhuis EE; Verstegen MM; van der Laan LJ; de Jonge J; IJzermans JN; Vries RG; van de Wetering M; Stratton MR; Clevers H; Cuppen E; van Boxtel R
    Nature; 2016 Oct; 538(7624):260-264. PubMed ID: 27698416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining cancer risk: the evolutionary multistage model or total stem cell divisions?
    Nunney L; Thai K
    Proc Biol Sci; 2020 Dec; 287(1941):20202291. PubMed ID: 33323077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct mutation accumulation rates among tissues determine the variation in cancer risk.
    Hao D; Wang L; Di LJ
    Sci Rep; 2016 Jan; 6():19458. PubMed ID: 26785814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple algebraic cancer equation: calculating how cancers may arise with normal mutation rates.
    Calabrese P; Shibata D
    BMC Cancer; 2010 Jan; 10():3. PubMed ID: 20051132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring single cell divisions in human tissues from multi-region sequencing data.
    Werner B; Case J; Williams MJ; Chkhaidze K; Temko D; Fernández-Mateos J; Cresswell GD; Nichol D; Cross W; Spiteri I; Huang W; Tomlinson IPM; Barnes CP; Graham TA; Sottoriva A
    Nat Commun; 2020 Feb; 11(1):1035. PubMed ID: 32098957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole genome sequencing of matched tumor, adjacent non-tumor tissues and corresponding normal blood samples of hepatocellular carcinoma patients revealed dynamic changes of the mutations profiles during hepatocarcinogenesis.
    Mao R; Liu J; Liu G; Jin S; Xue Q; Ma L; Fu Y; Zhao N; Xing J; Li L; Qiu Y; Lin B
    Oncotarget; 2017 Apr; 8(16):26185-26199. PubMed ID: 28412734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.