These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29377499)

  • 1. Local Surface Structure and Composition Control the Hydrogen Evolution Reaction on Iron Nickel Sulfides.
    Bentley CL; Andronescu C; Smialkowski M; Kang M; Tarnev T; Marler B; Unwin PR; Apfel UP; Schuhmann W
    Angew Chem Int Ed Engl; 2018 Apr; 57(15):4093-4097. PubMed ID: 29377499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating the Local Electrocatalytic Activity of Amorphous Molybdenum Sulfide Thin Films with Microscopic Composition, Structure, and Porosity.
    Bentley CL; Agoston R; Tao B; Walker M; Xu X; O'Mullane AP; Unwin PR
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44307-44316. PubMed ID: 32880446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity between and within Single Hematite Nanorods as Electrocatalysts for Oxygen Evolution Reaction.
    Li M; Ye KH; Qiu W; Wang Y; Ren H
    J Am Chem Soc; 2022 Mar; 144(12):5247-5252. PubMed ID: 35298886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction.
    Cheng L; Huang W; Gong Q; Liu C; Liu Z; Li Y; Dai H
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7860-3. PubMed ID: 24838978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the Nature of Iron Sulfide Surfaces During the Electrochemical Hydrogen Evolution and CO
    Zakaria SNA; Hollingsworth N; Islam HU; Roffey A; Santos-Carballal D; Roldan A; Bras W; Sankar G; Hogarth G; Holt KB; de Leeuw NH
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32078-32085. PubMed ID: 30028585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and Activity of Non-Noble-Metal-Based Catalysts Toward the Hydrogen Evolution Reaction.
    Ledendecker M; Mondschein JS; Kasian O; Geiger S; Göhl D; Schalenbach M; Zeradjanin A; Cherevko S; Schaak RE; Mayrhofer K
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9767-9771. PubMed ID: 28613404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radially Aligned Hierarchical Nickel/Nickel-Iron (Oxy)hydroxide Nanotubes for Efficient Electrocatalytic Water Splitting.
    Wu Z; Wang Z; Geng F
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8585-8593. PubMed ID: 29446915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction.
    Wang DY; Gong M; Chou HL; Pan CJ; Chen HA; Wu Y; Lin MC; Guan M; Yang J; Chen CW; Wang YL; Hwang BJ; Chen CC; Dai H
    J Am Chem Soc; 2015 Feb; 137(4):1587-92. PubMed ID: 25588180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Electroactive Ni Pyrophosphate/Pt Catalyst toward Hydrogen Evolution Reaction.
    Theerthagiri J; Cardoso ESF; Fortunato GV; Casagrande GA; Senthilkumar B; Madhavan J; Maia G
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4969-4982. PubMed ID: 30624046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-pure pentlandite Ni
    Tang Y; Yang H; Sun J; Xia M; Guo W; Yu L; Yan J; Zheng J; Chang L; Gao F
    Nanoscale; 2018 Jun; 10(22):10459-10466. PubMed ID: 29796565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning Electrochemical Cell Microscopy (SECCM) Chronopotentiometry: Development and Applications in Electroanalysis and Electrocatalysis.
    Daviddi E; Gonos KL; Colburn AW; Bentley CL; Unwin PR
    Anal Chem; 2019 Jul; 91(14):9229-9237. PubMed ID: 31251561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis.
    Santana Santos C; Jaato BN; Sanjuán I; Schuhmann W; Andronescu C
    Chem Rev; 2023 Apr; 123(8):4972-5019. PubMed ID: 36972701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic Iron-Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media.
    Long X; Li G; Wang Z; Zhu H; Zhang T; Xiao S; Guo W; Yang S
    J Am Chem Soc; 2015 Sep; 137(37):11900-3. PubMed ID: 26338434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.
    Zheng Y; Jiao Y; Zhu Y; Li LH; Han Y; Chen Y; Jaroniec M; Qiao SZ
    J Am Chem Soc; 2016 Dec; 138(49):16174-16181. PubMed ID: 27960327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction.
    Tavakkoli M; Kallio T; Reynaud O; Nasibulin AG; Johans C; Sainio J; Jiang H; Kauppinen EI; Laasonen K
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4535-8. PubMed ID: 25683139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and Phase Evolution of Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production.
    Lee SC; Benck JD; Tsai C; Park J; Koh AL; Abild-Pedersen F; Jaramillo TF; Sinclair R
    ACS Nano; 2016 Jan; 10(1):624-32. PubMed ID: 26624225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction.
    Ma Y; Wang R; Wang H; Linkov V; Ji S
    Phys Chem Chem Phys; 2014 Feb; 16(8):3593-602. PubMed ID: 24414092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.