BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 29377933)

  • 1. Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference.
    Sato'o Y; Hisatsune J; Yu L; Sakuma T; Yamamoto T; Sugai M
    PLoS One; 2018; 13(1):e0185987. PubMed ID: 29377933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels.
    Depardieu F; Bikard D
    Methods; 2020 Feb; 172():61-75. PubMed ID: 31377338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a Gene Knockdown System Based on Catalytically Inactive ("Dead") Cas9 (dCas9) in Staphylococcus aureus.
    Zhao C; Shu X; Sun B
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of a Conditional Knockout System for
    Ouellette SP
    Front Cell Infect Microbiol; 2018; 8():59. PubMed ID: 29535977
    [No Abstract]   [Full Text] [Related]  

  • 5. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus.
    Liu Q; Jiang Y; Shao L; Yang P; Sun B; Yang S; Chen D
    Acta Biochim Biophys Sin (Shanghai); 2017 Sep; 49(9):764-770. PubMed ID: 28910979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus.
    Dong X; Jin Y; Ming D; Li B; Dong H; Wang L; Wang T; Wang D
    J Microbiol Methods; 2017 Aug; 139():79-86. PubMed ID: 28522389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

  • 9. A Broad-Host-Range CRISPRi Toolkit for Silencing Gene Expression in
    Hogan AM; Rahman ASMZ; Lightly TJ; Cardona ST
    ACS Synth Biol; 2019 Oct; 8(10):2372-2384. PubMed ID: 31491085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus.
    Cao L; Gao CH; Zhu J; Zhao L; Wu Q; Li M; Sun B
    Int J Med Microbiol; 2016 Dec; 306(8):686-696. PubMed ID: 27600408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter Orientation within an AAV-CRISPR Vector Affects Cas9 Expression and Gene Editing Efficiency.
    Fry LE; Peddle CF; Stevanovic M; Barnard AR; McClements ME; MacLaren RE
    CRISPR J; 2020 Aug; 3(4):276-283. PubMed ID: 32833533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance.
    Kang YK; Kwon K; Ryu JS; Lee HN; Park C; Chung HJ
    Bioconjug Chem; 2017 Apr; 28(4):957-967. PubMed ID: 28215090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional Knockdown in Pneumococci Using CRISPR Interference.
    Kjos M
    Methods Mol Biol; 2019; 1968():89-98. PubMed ID: 30929208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plasmid toolset for CRISPR-mediated genome editing and CRISPRi gene regulation in Escherichia coli.
    Jervis AJ; Hanko EKR; Dunstan MS; Robinson CJ; Takano E; Scrutton NS
    Microb Biotechnol; 2021 May; 14(3):1120-1129. PubMed ID: 33710766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability.
    Martínez V; Lauritsen I; Hobel T; Li S; Nielsen AT; Nørholm MHH
    Nucleic Acids Res; 2017 Nov; 45(20):e171. PubMed ID: 28981713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Genome Editing in Most
    Yang P; Yang J; Lin T; Liu Q; Yin Y; Chen D; Yang S
    ACS Synth Biol; 2023 Nov; 12(11):3340-3351. PubMed ID: 37830328
    [No Abstract]   [Full Text] [Related]  

  • 19. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.