These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 29378088)
1. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088 [TBL] [Abstract][Full Text] [Related]
2. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Luo C; Borodin O; Ji X; Hou S; Gaskell KJ; Fan X; Chen J; Deng T; Wang R; Jiang J; Wang C Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2004-2009. PubMed ID: 29440381 [TBL] [Abstract][Full Text] [Related]
3. Adsorption-Assisted Redox Center in Porous Organic Frameworks for Boosting Lithium Storage. Xie H; Li P; Xie S; Jin H; Jin S; Kong X; Li Z; Ji H ChemSusChem; 2023 Jul; 16(14):e202300312. PubMed ID: 36942356 [TBL] [Abstract][Full Text] [Related]
4. Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries. Luo C; Ji X; Hou S; Eidson N; Fan X; Liang Y; Deng T; Jiang J; Wang C Adv Mater; 2018 Jun; 30(23):e1706498. PubMed ID: 29687487 [TBL] [Abstract][Full Text] [Related]
5. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758 [TBL] [Abstract][Full Text] [Related]
6. Uric Acid as an Electrochemically Active Compound for Sodium-Ion Batteries: Stepwise Na Ma C; Zhao X; Harris MM; Liu J; Wang KX; Chen JS ACS Appl Mater Interfaces; 2017 Oct; 9(39):33934-33940. PubMed ID: 28898044 [TBL] [Abstract][Full Text] [Related]
7. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance. Shin HS; Jung KN; Jo YN; Park MS; Kim H; Lee JW Sci Rep; 2016 May; 6():26195. PubMed ID: 27189834 [TBL] [Abstract][Full Text] [Related]
8. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
9. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456 [TBL] [Abstract][Full Text] [Related]
10. An ultrastable anode for long-life room-temperature sodium-ion batteries. Yu H; Ren Y; Xiao D; Guo S; Zhu Y; Qian Y; Gu L; Zhou H Angew Chem Int Ed Engl; 2014 Aug; 53(34):8963-9. PubMed ID: 24962822 [TBL] [Abstract][Full Text] [Related]
11. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe Hou BH; Wang YY; Guo JZ; Zhang Y; Ning QL; Yang Y; Li WH; Zhang JP; Wang XL; Wu XL ACS Appl Mater Interfaces; 2018 Jan; 10(4):3581-3589. PubMed ID: 29303243 [TBL] [Abstract][Full Text] [Related]
12. NASICON-Type Mg Zhao Y; Wei Z; Pang Q; Wei Y; Cai Y; Fu Q; Du F; Sarapulova A; Ehrenberg H; Liu B; Chen G ACS Appl Mater Interfaces; 2017 Feb; 9(5):4709-4718. PubMed ID: 28098442 [TBL] [Abstract][Full Text] [Related]
13. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries. Wang H; Wu Q; Wang Y; Lv X; Wang HG J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1024-1030. PubMed ID: 34487925 [TBL] [Abstract][Full Text] [Related]
14. Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Batteries. Zhang H; Sun W; Chen X; Wang Y ACS Nano; 2019 Dec; 13(12):14252-14261. PubMed ID: 31794178 [TBL] [Abstract][Full Text] [Related]
15. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries. Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524 [TBL] [Abstract][Full Text] [Related]
16. Carbonyl-rich Poly(pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries. Li K; Xu S; Han D; Si Z; Wang HG Chem Asian J; 2021 Jul; 16(14):1973-1978. PubMed ID: 34057815 [TBL] [Abstract][Full Text] [Related]
17. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries. Deng W; Shen Y; Qian J; Cao Y; Yang H ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982 [TBL] [Abstract][Full Text] [Related]
18. Agaric-like anodes of porous carbon decorated with MoO Hou C; Yang W; Xie X; Sun X; Wang J; Naik N; Pan D; Mai X; Guo Z; Dang F; Du W J Colloid Interface Sci; 2021 Aug; 596():396-407. PubMed ID: 33848745 [TBL] [Abstract][Full Text] [Related]
19. Flexible Overoxidized Polypyrrole Films with Orderly Structure as High-Performance Anodes for Li- and Na-Ion Batteries. Yuan T; Ruan J; Zhang W; Tan Z; Yang J; Ma ZF; Zheng S ACS Appl Mater Interfaces; 2016 Dec; 8(51):35114-35122. PubMed ID: 27990797 [TBL] [Abstract][Full Text] [Related]
20. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction. Lee JW; Shin HS; Lee CW; Jung KN Nanoscale Res Lett; 2016 Dec; 11(1):45. PubMed ID: 26831683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]