BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29378136)

  • 1. Fully Flexible Docking via Reaction-Coordinate-Independent Molecular Dynamics Simulations.
    Bertazzo M; Bernetti M; Recanatini M; Masetti M; Cavalli A
    J Chem Inf Model; 2018 Feb; 58(2):490-500. PubMed ID: 29378136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery.
    Gioia D; Bertazzo M; Recanatini M; Masetti M; Cavalli A
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29165360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.
    Liu K; Kokubo H
    J Chem Inf Model; 2017 Oct; 57(10):2514-2522. PubMed ID: 28902511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
    Liu K; Watanabe E; Kokubo H
    J Comput Aided Mol Des; 2017 Feb; 31(2):201-211. PubMed ID: 28074360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancements in Docking and Molecular Dynamics Simulations Towards Ligand-receptor Interactions and Structure-function Relationships.
    Naqvi AAT; Mohammad T; Hasan GM; Hassan MI
    Curr Top Med Chem; 2018; 18(20):1755-1768. PubMed ID: 30360721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Dynamic Docking Guided by Adaptive Electrostatic Bias: The MD-Binding Approach.
    Spitaleri A; Decherchi S; Cavalli A; Rocchia W
    J Chem Theory Comput; 2018 Mar; 14(3):1727-1736. PubMed ID: 29351374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can We Rely on Computational Predictions To Correctly Identify Ligand Binding Sites on Novel Protein Drug Targets? Assessment of Binding Site Prediction Methods and a Protocol for Validation of Predicted Binding Sites.
    Broomhead NK; Soliman ME
    Cell Biochem Biophys; 2017 Mar; 75(1):15-23. PubMed ID: 27796788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Protein-Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations.
    Clark AJ; Tiwary P; Borrelli K; Feng S; Miller EB; Abel R; Friesner RA; Berne BJ
    J Chem Theory Comput; 2016 Jun; 12(6):2990-8. PubMed ID: 27145262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics as a Tool for Virtual Ligand Screening.
    Menchon G; Maveyraud L; Czaplicki G
    Methods Mol Biol; 2018; 1762():145-178. PubMed ID: 29594772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP.
    Zacharias M
    Proteins; 2004 Mar; 54(4):759-67. PubMed ID: 14997571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Molecular Docking and Molecular Dynamics Simulations.
    Santos LHS; Ferreira RS; Caffarena ER
    Methods Mol Biol; 2019; 2053():13-34. PubMed ID: 31452096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-ligand docking using hamiltonian replica exchange simulations with soft core potentials.
    Luitz MP; Zacharias M
    J Chem Inf Model; 2014 Jun; 54(6):1669-75. PubMed ID: 24855894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Binding with Large Conformational Changes: Key Points in Ensemble-Docking Approaches.
    Motta S; Bonati L
    J Chem Inf Model; 2017 Jul; 57(7):1563-1578. PubMed ID: 28616990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for global protein deformability during protein-protein and protein-ligand docking.
    May A; Zacharias M
    Biochim Biophys Acta; 2005 Dec; 1754(1-2):225-31. PubMed ID: 16214429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steered Molecular Dynamics Simulation in Rational Drug Design.
    Do PC; Lee EH; Le L
    J Chem Inf Model; 2018 Aug; 58(8):1473-1482. PubMed ID: 29975531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Collective Variable for the Rapid Exploration of Protein Druggability.
    Cuchillo R; Pinto-Gil K; Michel J
    J Chem Theory Comput; 2015 Mar; 11(3):1292-307. PubMed ID: 26579775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvents to Fragments to Drugs: MD Applications in Drug Design.
    Defelipe LA; Arcon JP; Modenutti CP; Marti MA; Turjanski AG; Barril X
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.
    Gadhe CG; Balupuri A; Cho SJ
    J Biomol Struct Dyn; 2015; 33(11):2491-510. PubMed ID: 25617117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.