BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29378136)

  • 21. Molecular Modeling of Chemoreceptor:Ligand Interactions.
    Orr AA; Jayaraman A; Tamamis P
    Methods Mol Biol; 2018; 1729():353-372. PubMed ID: 29429104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.
    Zacarías-Lara OJ; Correa-Basurto J; Bello M
    Biopolymers; 2016 Jul; 105(7):393-413. PubMed ID: 27016043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations.
    Mollica L; Decherchi S; Zia SR; Gaspari R; Cavalli A; Rocchia W
    Sci Rep; 2015 Jun; 5():11539. PubMed ID: 26103621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational modeling of human coreceptor CCR5 antagonist as a HIV-1 entry inhibitor: using an integrated homology modeling, docking, and membrane molecular dynamics simulation analysis approach.
    Gadhe CG; Kothandan G; Cho SJ
    J Biomol Struct Dyn; 2013; 31(11):1251-76. PubMed ID: 23153179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of molecular dynamics on drug design: applications for the characterization of ligand-macromolecule complexes.
    Mortier J; Rakers C; Bermudez M; Murgueitio MS; Riniker S; Wolber G
    Drug Discov Today; 2015 Jun; 20(6):686-702. PubMed ID: 25615716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation.
    Rajamanikandan S; Jeyakanthan J; Srinivasan P
    Appl Biochem Biotechnol; 2017 Jan; 181(1):192-218. PubMed ID: 27535409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations.
    Sixto-López Y; Bello M; Rodríguez-Fonseca RA; Rosales-Hernández MC; Martínez-Archundia M; Gómez-Vidal JA; Correa-Basurto J
    J Biomol Struct Dyn; 2017 Oct; 35(13):2794-2814. PubMed ID: 27589363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of Molecular Dynamics Simulations in Structure-Based Drug Discovery.
    Bera I; Payghan PV
    Curr Pharm Des; 2019; 25(31):3339-3349. PubMed ID: 31480998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches.
    Huang SY; Li M; Wang J; Pan Y
    J Chem Inf Model; 2016 Jun; 56(6):1078-87. PubMed ID: 26317502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational allosteric ligand binding site identification on Ras proteins.
    McCarthy M; Prakash P; Gorfe AA
    Acta Biochim Biophys Sin (Shanghai); 2016 Jan; 48(1):3-10. PubMed ID: 26487442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and dynamical aspects of Streptococcus gordonii FabH through molecular docking and MD simulations.
    Shamim A; Abbasi SW; Azam SS
    J Mol Graph Model; 2015 Jul; 60():180-96. PubMed ID: 26059477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collective variable driven molecular dynamics to improve protein-protein docking scoring.
    Masone D; Grosdidier S
    Comput Biol Chem; 2014 Apr; 49():1-6. PubMed ID: 24509001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of Molecular Dynamics to Expand Docking Program's Exploratory Capabilities and to Evaluate Its Predictions.
    Kasprzak WK; Shapiro BA
    Methods Mol Biol; 2023; 2568():75-101. PubMed ID: 36227563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins.
    Meireles L; Gur M; Bakan A; Bahar I
    Protein Sci; 2011 Oct; 20(10):1645-58. PubMed ID: 21826755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data.
    González-Andrade M; Rodríguez-Sotres R; Madariaga-Mazón A; Rivera-Chávez J; Mata R; Sosa-Peinado A; Del Pozo-Yauner L; Arias-Olguín II
    J Biomol Struct Dyn; 2016; 34(1):78-91. PubMed ID: 25702612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shape-based virtual screening, docking, and molecular dynamics simulations to identify Mtb-ASADH inhibitors.
    Kumar R; Garg P; Bharatam PV
    J Biomol Struct Dyn; 2015; 33(5):1082-93. PubMed ID: 24875451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulations and novel drug discovery.
    Liu X; Shi D; Zhou S; Liu H; Liu H; Yao X
    Expert Opin Drug Discov; 2018 Jan; 13(1):23-37. PubMed ID: 29139324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations.
    Cournia Z; Allen B; Sherman W
    J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate Prediction for Protein-Peptide Binding Based on High-Temperature Molecular Dynamics Simulations.
    Chen JN; Jiang F; Wu YD
    J Chem Theory Comput; 2022 Oct; 18(10):6386-6395. PubMed ID: 36149394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.