BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29378396)

  • 1. Recovery of Macro and Micro-Nutrients by Hydrothermal Carbonization of Septage.
    McGaughy K; Reza MT
    J Agric Food Chem; 2018 Feb; 66(8):1854-1862. PubMed ID: 29378396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.
    Kataki S; Hazarika S; Baruah DC
    Waste Manag; 2017 Jan; 59():102-117. PubMed ID: 27771200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil.
    Xu Y; Wang B; Ding S; Zhao M; Ji Y; Xie W; Feng Z; Feng Y
    Sci Total Environ; 2022 Dec; 850():157953. PubMed ID: 35963404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus release from hydrothermally carbonized digested sewage sludge using organic acids.
    Pérez C; Boily JF; Skoglund N; Jansson S; Fick J
    Waste Manag; 2022 Sep; 151():60-69. PubMed ID: 35926282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor.
    Erdogan E; Atila B; Mumme J; Reza MT; Toptas A; Elibol M; Yanik J
    Bioresour Technol; 2015 Nov; 196():35-42. PubMed ID: 26226579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal carbonization (HTC) of dairy waste: effect of temperature and initial acidity on the composition and quality of solid and liquid products.
    Khalaf N; Shi W; Fenton O; Kwapinski W; Leahy JJ
    Open Res Eur; 2022; 2():83. PubMed ID: 37645300
    [No Abstract]   [Full Text] [Related]  

  • 7. Hydrothermal carbonization of food waste for nutrient recovery and reuse.
    Idowu I; Li L; Flora JRV; Pellechia PJ; Darko SA; Ro KS; Berge ND
    Waste Manag; 2017 Nov; 69():480-491. PubMed ID: 28888805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrothermal carbonization on pyrolysis behavior, nutrients and metal species distribution in municipal sludge.
    Liu C; Yue Z; Ma D; Li K; Xie Z; Zhang T; Wang J
    Bioresour Technol; 2024 May; 399():130524. PubMed ID: 38492652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate.
    Celletti S; Bergamo A; Benedetti V; Pecchi M; Patuzzi F; Basso D; Baratieri M; Cesco S; Mimmo T
    J Environ Manage; 2021 Feb; 280():111635. PubMed ID: 33187784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hydrolysis and carbonization reactions on hydrochar production.
    Fakkaew K; Koottatep T; Polprasert C
    Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of heavy metal-containing biowaste from phytoremediation site to value-added solid fuel through hydrothermal carbonization.
    Lee J; Park KY
    Environ Pollut; 2021 Jan; 269():116127. PubMed ID: 33279266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatio-temporal variation of septage characteristics of a semi-arid metropolitan city in a developing country.
    Krithika D; Thomas AR; Iyer GR; Kranert M; Philip L
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7060-7076. PubMed ID: 28092008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization.
    Becker GC; Wüst D; Köhler H; Lautenbach A; Kruse A
    J Environ Manage; 2019 May; 238():119-125. PubMed ID: 30849596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion.
    Li CS; Cai RR
    Sci Total Environ; 2022 Sep; 838(Pt 2):155867. PubMed ID: 35568172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization.
    Chu Q; Xue L; Singh BP; Yu S; Müller K; Wang H; Feng Y; Pan G; Zheng X; Yang L
    Chemosphere; 2020 Apr; 245():125558. PubMed ID: 31855761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges.
    Huang R; Zhang B; Saad EM; Ingall ED; Tang Y
    Water Res; 2018 Apr; 132():260-269. PubMed ID: 29331913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal carbonization combined with thermochemical treatment of sewage sludge: Effects of MgCl
    Stobernack N; Malek C
    Waste Manag; 2023 Jun; 165():150-158. PubMed ID: 37127003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrothermal carbonization of digested sewage sludge: The fate of heavy metals, PAHs, PCBs, dioxins and pesticides.
    Tasca AL; Vitolo S; Gori R; Mannarino G; Raspolli Galletti AM; Puccini M
    Chemosphere; 2022 Nov; 307(Pt 3):135997. PubMed ID: 35987266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge.
    Shan G; Li W; Bao S; Hu X; Liu J; Zhu L; Tan W
    Waste Manag; 2023 Jan; 155():192-198. PubMed ID: 36379168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.