These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 29378517)

  • 1. Cost-benefit analysis of aquaculture breeding programs.
    Janssen K; Saatkamp H; Komen H
    Genet Sel Evol; 2018 Jan; 50(1):2. PubMed ID: 29378517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and economic benefits of selection based on performance recording and genotyping in lower tiers of multi-tiered sheep breeding schemes.
    Santos BF; van der Werf JH; Gibson JP; Byrne TJ; Amer PR
    Genet Sel Evol; 2017 Jan; 49(1):10. PubMed ID: 28095776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic values of growth and feed efficiency for fish farming in recirculating aquaculture system with density and nitrogen output limitations: a case study with African catfish (Clarias gariepinus).
    Besson M; Komen H; Aubin J; de Boer IJ; Poelman M; Quillet E; Vancoillie C; Vandeputte M; van Arendonk JA
    J Anim Sci; 2014 Dec; 92(12):5394-405. PubMed ID: 25414104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated systems analysis of sow replacement rates in a hierarchical swine breeding structure.
    Faust MA; Robison OW; Tess MW
    J Anim Sci; 1993 Nov; 71(11):2885-90. PubMed ID: 8270511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the genetic and economic impact of performance recording and genotyping in Australian commercial sheep operations.
    Santos BFS; Amer PR; Granleese T; Byrne TJ; Hogan L; Gibson JP; van der Werf JHJ
    J Anim Breed Genet; 2018 Jun; 135(3):221-237. PubMed ID: 29878494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and economic analyses of female replacement rates in the dam-daughter pathway of a hierarchical swine breeding structure.
    Faust MA; Robison OW; Tess MW
    J Anim Sci; 1992 Jul; 70(7):2053-64. PubMed ID: 1644678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mating structures for genomic selection breeding programs in aquaculture.
    Sonesson AK; Ødegård J
    Genet Sel Evol; 2016 Jun; 48(1):46. PubMed ID: 27342705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-economic and operational feasibility of introducing oestrus synchronization and artificial insemination in simulated smallholder sheep breeding programmes.
    Gizaw S; Tegegne A
    Animal; 2018 Jul; 12(7):1517-1526. PubMed ID: 29143721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the efficiency of alternative two-tier nucleus breeding systems designed to improve meat sheep in Kenya.
    Gicheha MG; Kosgey IS; Bebe BO; Kahi AK
    J Anim Breed Genet; 2006 Aug; 123(4):247-57. PubMed ID: 16882091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of communal rearing of families and DNA pooling in aquaculture genomic selection schemes.
    Sonesson AK; Meuwissen TH; Goddard ME
    Genet Sel Evol; 2010 Nov; 42(1):41. PubMed ID: 21092198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of breeding objectives for purebred and crossbred selection schemes for adoption in indigenous chicken breeding programmes.
    Okeno TO; Kahi AK; Peters KJ
    Br Poult Sci; 2013; 54(1):62-75. PubMed ID: 23444855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of genome-wide evaluation for disease resistance in aquaculture breeding programs.
    Villanueva B; Fernández J; García-Cortés LA; Varona L; Daetwyler HD; Toro MA
    J Anim Sci; 2011 Nov; 89(11):3433-42. PubMed ID: 21742941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breeding programs for smallholder sheep farming systems: I. Evaluation of alternative designs of breeding schemes.
    Gizaw S; Rischkowsky B; Valle-Zárate A; Haile A; van Arendonk JA; Mwai AO; Dessie T
    J Anim Breed Genet; 2014 Oct; 131(5):341-9. PubMed ID: 24943247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of alternative breeding schemes for the genetic improvement of common Tigray highland sheep in northern Ethiopia.
    Haileselassie KW; Kebede SA; Letta MU; GebreMichael SG
    Genet Sel Evol; 2022 Sep; 54(1):63. PubMed ID: 36114447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and economic effects of the increase in female paternal filiations by parentage assignment in sheep and goat breeding programs.
    Raoul J; Palhière I; Astruc JM; Elsen JM
    J Anim Sci; 2016 Sep; 94(9):3663-3683. PubMed ID: 27898915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AlphaPart-R implementation of the method for partitioning genetic trends.
    Obšteter J; Holl J; Hickey JM; Gorjanc G
    Genet Sel Evol; 2021 Mar; 53(1):30. PubMed ID: 33736590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of semen trait selection, artificial insemination technique, and semen dose to the profitability of pig production systems: A simulation study.
    Gonzalez-Pena D; Knox RV; Rodriguez-Zas SL
    Theriogenology; 2016 Jan; 85(2):335-44. PubMed ID: 26435262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproductive technologies combine well with genomic selection in dairy breeding programs.
    Thomasen JR; Willam A; Egger-Danner C; Sørensen AC
    J Dairy Sci; 2016 Feb; 99(2):1331-1340. PubMed ID: 26686703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domestication and genetic improvement: balancing improved production against increased disease risks from inbreeding.
    Doyle RW; Lal KK; Virapat C
    Rev Sci Tech; 2019 Sep; 38(2):615-628. PubMed ID: 31866672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.