These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29378628)

  • 1. Activation of MAP kinases by green leaf volatiles in grasses.
    Dombrowski JE; Martin RC
    BMC Res Notes; 2018 Jan; 11(1):79. PubMed ID: 29378628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green leaf volatiles, fire and nonanoic acid activate MAPkinases in the model grass species Lolium temulentum.
    Dombrowski JE; Martin RC
    BMC Res Notes; 2014 Nov; 7():807. PubMed ID: 25403248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of the model grass Lolium temulentum exposed to green leaf volatiles.
    Dombrowski JE; Kronmiller BA; Hollenbeck VG; Rhodes AC; Henning JA; Martin RC
    BMC Plant Biol; 2019 May; 19(1):222. PubMed ID: 31138172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abiotic stresses activate a MAPkinase in the model grass species Lolium temulentum.
    Dombrowski JE; Martin RC
    J Plant Physiol; 2012 Jun; 169(9):915-9. PubMed ID: 22472075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses.
    Dombrowski JE; Hind SR; Martin RC; Stratmann JW
    Plant Sci; 2011 May; 180(5):686-93. PubMed ID: 21421419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Green leaf volatile production by plants: a meta-analysis.
    Ameye M; Allmann S; Verwaeren J; Smagghe G; Haesaert G; Schuurink RC; Audenaert K
    New Phytol; 2018 Nov; 220(3):666-683. PubMed ID: 28665020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in extracellular pH are neither required nor sufficient for activation of mitogen-activated protein kinases (MAPKs) in response to systemin and fusicoccin in tomato.
    Higgins R; Lockwood T; Holley S; Yalamanchili R; Stratmann JW
    Planta; 2007 May; 225(6):1535-46. PubMed ID: 17109147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green Leaf Volatiles in Plant Signaling and Response.
    Matsui K; Koeduka T
    Subcell Biochem; 2016; 86():427-43. PubMed ID: 27023245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contribution of LOX10, green leaf volatiles and JA to wound-induced local and systemic oxylipin and hormone signature in Zea mays (maize).
    He Y; Borrego EJ; Gorman Z; Huang PC; Kolomiets MV
    Phytochemistry; 2020 Jun; 174():112334. PubMed ID: 32172019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus.
    Jiang Y; Ye J; Liu B; Rikisahedew JJ; Tosens T; Niinemets Ü
    J Plant Physiol; 2022 Jul; 274():153721. PubMed ID: 35597107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles.
    Tanaka T; Ikeda A; Shiojiri K; Ozawa R; Shiki K; Nagai-Kunihiro N; Fujita K; Sugimoto K; Yamato KT; Dohra H; Ohnishi T; Koeduka T; Matsui K
    Plant Physiol; 2018 Oct; 178(2):552-564. PubMed ID: 30126866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for real-time monitoring of leaf wounding responses demonstrates unprecedently fast and high emissions of volatiles from cut leaves.
    Rasulov B; Talts E; Niinemets Ü
    Plant Sci; 2019 Jun; 283():256-265. PubMed ID: 31128696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets.
    Takai H; Ozawa R; Takabayashi J; Fujii S; Arai K; Ichiki RT; Koeduka T; Dohra H; Ohnishi T; Taketazu S; Kobayashi J; Kainoh Y; Nakamura S; Fujii T; Ishikawa Y; Kiuchi T; Katsuma S; Uefune M; Shimada T; Matsui K
    Sci Rep; 2018 Aug; 8(1):11942. PubMed ID: 30093702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Herbivorous Caterpillars and the Green Leaf Volatile (GLV) Quandary.
    Jones AC; Cofer TM; Engelberth J; Tumlinson JH
    J Chem Ecol; 2022 Mar; 48(3):337-345. PubMed ID: 34807370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wounding-Induced VOC Emissions in Five Tropical Agricultural Species.
    Portillo-Estrada M; Okereke CN; Jiang Y; Talts E; Kaurilind E; Niinemets Ü
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33946933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green leaf volatile-burst in Arabidopsis is governed by galactolipid oxygenation by a lipoxygenase that is under control of calcium ion.
    Mochizuki S; Matsui K
    Biochem Biophys Res Commun; 2018 Nov; 505(3):939-944. PubMed ID: 30309649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato.
    Pedley KF; Martin GB
    J Biol Chem; 2004 Nov; 279(47):49229-35. PubMed ID: 15371431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis lipoxygenase 2 is essential for formation of green leaf volatiles and five-carbon volatiles.
    Mochizuki S; Sugimoto K; Koeduka T; Matsui K
    FEBS Lett; 2016 Apr; 590(7):1017-27. PubMed ID: 26991128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.).
    Piesik D; Pańka D; Delaney KJ; Skoczek A; Lamparski R; Weaver DK
    J Plant Physiol; 2011 Jun; 168(9):878-86. PubMed ID: 21208684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primed to grow: a new role for green leaf volatiles in plant stress responses.
    Engelberth J
    Plant Signal Behav; 2020; 15(1):1701240. PubMed ID: 31814504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.