BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29378945)

  • 21. Age and environmental exposures influence the fecal bacteriome of young children with cystic fibrosis.
    Loman BR; Shrestha CL; Thompson R; Groner JA; Mejias A; Ruoff KL; O'Toole GA; Bailey MT; Kopp BT
    Pediatr Pulmonol; 2020 Jul; 55(7):1661-1670. PubMed ID: 32275127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children.
    Sánchez E; Nadal I; Donat E; Ribes-Koninckx C; Calabuig M; Sanz Y
    BMC Gastroenterol; 2008 Nov; 8():50. PubMed ID: 18983674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ST131 Escherichia coli H22 subclone from human intestinal microbiota: Comparison of genomic and phenotypic traits with those of the globally successful H30 subclone.
    Nicolas-Chanoine MH; Petitjean M; Mora A; Mayer N; Lavigne JP; Boulet O; Leflon-Guibout V; Blanco J; Hocquet D
    BMC Microbiol; 2017 Mar; 17(1):71. PubMed ID: 28347271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota.
    Miragoli F; Federici S; Ferrari S; Minuti A; Rebecchi A; Bruzzese E; Buccigrossi V; Guarino A; Callegari ML
    FEMS Microbiol Ecol; 2017 Feb; 93(2):. PubMed ID: 27810876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pilot study demonstrating the altered gut microbiota functionality in stable adults with Cystic Fibrosis.
    Fouhy F; Ronan NJ; O'Sullivan O; McCarthy Y; Walsh AM; Murphy DM; Daly M; Flanagan ET; Fleming C; McCarthy M; Shortt C; Eustace JA; Shanahan F; Rea MC; Ross RP; Stanton C; Plant BJ
    Sci Rep; 2017 Jul; 7(1):6685. PubMed ID: 28751714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An
    Barrack KE; Hampton TH; Valls RA; Surve SV; Gardner TB; Sanville JL; Madan JL; O'Toole GA
    J Bacteriol; 2024 Jan; 206(1):e0028623. PubMed ID: 38169295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interactions of the Hindgut Mucosa-Associated Microbiome with Its Host Regulate Shedding of Escherichia coli O157:H7 by Cattle.
    Wang O; McAllister TA; Plastow G; Stanford K; Selinger B; Guan LL
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Associations between Gut Microbial Colonization in Early Life and Respiratory Outcomes in Cystic Fibrosis.
    Hoen AG; Li J; Moulton LA; O'Toole GA; Housman ML; Koestler DC; Guill MF; Moore JH; Hibberd PL; Morrison HG; Sogin ML; Karagas MR; Madan JC
    J Pediatr; 2015 Jul; 167(1):138-47.e1-3. PubMed ID: 25818499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn's disease-associated Escherichia coli.
    Gibold L; Garenaux E; Dalmasso G; Gallucci C; Cia D; Mottet-Auselo B; Faïs T; Darfeuille-Michaud A; Nguyen HT; Barnich N; Bonnet R; Delmas J
    Cell Microbiol; 2016 May; 18(5):617-31. PubMed ID: 26499863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gut Microbiota in Children With Cystic Fibrosis: A Taxonomic and Functional Dysbiosis.
    Coffey MJ; Nielsen S; Wemheuer B; Kaakoush NO; Garg M; Needham B; Pickford R; Jaffe A; Thomas T; Ooi CY
    Sci Rep; 2019 Dec; 9(1):18593. PubMed ID: 31819107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health.
    Madan JC
    Clin Ther; 2016 Apr; 38(4):740-6. PubMed ID: 26973296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Infants with cystic fibrosis have altered fecal functional capacities with potential clinical and metabolic consequences.
    Eng A; Hayden HS; Pope CE; Brittnacher MJ; Vo AT; Weiss EJ; Hager KR; Leung DH; Heltshe SL; Raftery D; Miller SI; Hoffman LR; Borenstein E
    BMC Microbiol; 2021 Sep; 21(1):247. PubMed ID: 34525965
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is there a role for stool metabolomics in cystic fibrosis?
    Kaakoush NO; Pickford R; Jaffe A; Ooi CY
    Pediatr Int; 2016 Aug; 58(8):808-11. PubMed ID: 27553892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationship between the intestinal microbiome and body mass index in children with cystic fibrosis.
    Bernard R; Shilts MH; Strickland BA; Boone HH; Payne DC; Brown RF; Edwards K; Das SR; Nicholson MR
    J Cyst Fibros; 2024 Mar; 23(2):242-251. PubMed ID: 37953184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The association between gut microbiome and growth in infants with cystic fibrosis.
    Deschamp AR; Chen Y; Wang WF; Rasic M; Hatch J; Sanders DB; Ranganathan SC; Ferkol T; Perkins D; Finn P; Davis SD
    J Cyst Fibros; 2023 Nov; 22(6):1010-1016. PubMed ID: 37598041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Associations between micronutrient intakes and gut microbiota in a group of adults with cystic fibrosis.
    Li L; Krause L; Somerset S
    Clin Nutr; 2017 Aug; 36(4):1097-1104. PubMed ID: 27595636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The lung and gut microbiome: what has to be taken into consideration for cystic fibrosis?
    Héry-Arnaud G; Boutin S; Cuthbertson L; Elborn SJ; Tunney MM
    J Cyst Fibros; 2019 Jan; 18(1):13-21. PubMed ID: 30487080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis.
    Nielsen S; Needham B; Leach ST; Day AS; Jaffe A; Thomas T; Ooi CY
    Sci Rep; 2016 May; 6():24857. PubMed ID: 27143104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intestinal microbiome as a risk factor for urinary tract infections in children.
    Paalanne N; Husso A; Salo J; Pieviläinen O; Tejesvi MV; Koivusaari P; Pirttilä AM; Pokka T; Mattila S; Jyrkäs J; Turpeinen A; Uhari M; Renko M; Tapiainen T
    Eur J Clin Microbiol Infect Dis; 2018 Oct; 37(10):1881-1891. PubMed ID: 30006660
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.
    Ju T; Shoblak Y; Gao Y; Yang K; Fouhse J; Finlay BB; So YW; Stothard P; Willing BP
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.