BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 29379061)

  • 1. Using DNA origami nanorulers as traceable distance measurement standards and nanoscopic benchmark structures.
    Raab M; Jusuk I; Molle J; Buhr E; Bodermann B; Bergmann D; Bosse H; Tinnefeld P
    Sci Rep; 2018 Jan; 8(1):1780. PubMed ID: 29379061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward quantitative fluorescence microscopy with DNA origami nanorulers.
    Beater S; Raab M; Tinnefeld P
    Methods Cell Biol; 2014; 123():449-66. PubMed ID: 24974042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence microscopy with 6 nm resolution on DNA origami.
    Raab M; Schmied JJ; Jusuk I; Forthmann C; Tinnefeld P
    Chemphyschem; 2014 Aug; 15(12):2431-5. PubMed ID: 24895173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choosing dyes for cw-STED nanoscopy using self-assembled nanorulers.
    Beater S; Holzmeister P; Pibiri E; Lalkens B; Tinnefeld P
    Phys Chem Chem Phys; 2014 Apr; 16(15):6990-6. PubMed ID: 24599511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA origami-based standards for quantitative fluorescence microscopy.
    Schmied JJ; Raab M; Forthmann C; Pibiri E; Wünsch B; Dammeyer T; Tinnefeld P
    Nat Protoc; 2014; 9(6):1367-91. PubMed ID: 24833175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures.
    Schröder T; Scheible MB; Steiner F; Vogelsang J; Tinnefeld P
    Nano Lett; 2019 Feb; 19(2):1275-1281. PubMed ID: 30681342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.
    Acuna GP; Bucher M; Stein IH; Steinhauer C; Kuzyk A; Holzmeister P; Schreiber R; Moroz A; Stefani FD; Liedl T; Simmel FC; Tinnefeld P
    ACS Nano; 2012 Apr; 6(4):3189-95. PubMed ID: 22439823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCNA as Protein-Based Nanoruler for Sub-10 nm Fluorescence Imaging.
    Helmerich DA; Budiarta M; Taban D; Doose S; Beliu G; Sauer M
    Adv Mater; 2024 Feb; 36(7):e2310104. PubMed ID: 38009560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Regeneration and Self-Healing in DNA Origami Nanostructures.
    Scheckenbach M; Schubert T; Forthmann C; Glembockyte V; Tinnefeld P
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4931-4938. PubMed ID: 33230933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D superresolution microscopy by supercritical angle detection.
    Deschamps J; Mund M; Ries J
    Opt Express; 2014 Nov; 22(23):29081-91. PubMed ID: 25402146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners.
    Kaminska I; Bohlen J; Rocchetti S; Selbach F; Acuna GP; Tinnefeld P
    Nano Lett; 2019 Jul; 19(7):4257-4262. PubMed ID: 31251640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving single-molecule assembled patterns with superresolution blink-microscopy.
    Cordes T; Strackharn M; Stahl SW; Summerer W; Steinhauer C; Forthmann C; Puchner EM; Vogelsang J; Gaub HE; Tinnefeld P
    Nano Lett; 2010 Feb; 10(2):645-51. PubMed ID: 20017533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Origami Nanoantennas for Fluorescence Enhancement.
    Glembockyte V; Grabenhorst L; Trofymchuk K; Tinnefeld P
    Acc Chem Res; 2021 Sep; 54(17):3338-3348. PubMed ID: 34435769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-Resolution Imaging Conditions for enhanced Yellow Fluorescent Protein (eYFP) Demonstrated on DNA Origami Nanorulers.
    Jusuk I; Vietz C; Raab M; Dammeyer T; Tinnefeld P
    Sci Rep; 2015 Sep; 5():14075. PubMed ID: 26373229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Voltage Sensing Using DNA Origami.
    Hemmig EA; Fitzgerald C; Maffeo C; Hecker L; Ochmann SE; Aksimentiev A; Tinnefeld P; Keyser UF
    Nano Lett; 2018 Mar; 18(3):1962-1971. PubMed ID: 29430924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA origami nanopillars as standards for three-dimensional superresolution microscopy.
    Schmied JJ; Forthmann C; Pibiri E; Lalkens B; Nickels P; Liedl T; Tinnefeld P
    Nano Lett; 2013 Feb; 13(2):781-5. PubMed ID: 23362960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization microscopy of DNA in situ using Vybrant(®) DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution.
    Żurek-Biesiada D; Szczurek AT; Prakash K; Mohana GK; Lee HK; Roignant JY; Birk UJ; Dobrucki JW; Cremer C
    Exp Cell Res; 2016 May; 343(2):97-106. PubMed ID: 26341267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counting fluorescent dye molecules on DNA origami by means of photon statistics.
    Kurz A; Schmied JJ; Grußmayer KS; Holzmeister P; Tinnefeld P; Herten DP
    Small; 2013 Dec; 9(23):4061-8. PubMed ID: 23794455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy.
    Blumhardt P; Stein J; Mücksch J; Stehr F; Bauer J; Jungmann R; Schwille P
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30513691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.