These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Systematic prediction of EMS-induced mutations in a sorghum mutant population. Simons JM; Herbert TC; Kauffman C; Batete MY; Simpson AT; Katsuki Y; Le D; Amundson D; Buescher EM; Weil C; Tuinstra M; Addo-Quaye C Plant Direct; 2022 May; 6(5):e404. PubMed ID: 35647479 [TBL] [Abstract][Full Text] [Related]
25. Mutation in the Endo-β-1,4-glucanase (KORRIGAN) Is Responsible for Thick Leaf Phenotype in Sorghum. Mendu L; Jalathge G; Dhillon KK; Singh NP; Balasubramanian VK; Fewou R; Gitz DC; Chen J; Xin Z; Mendu V Plants (Basel); 2022 Dec; 11(24):. PubMed ID: 36559643 [TBL] [Abstract][Full Text] [Related]
26. Leaf sheath cuticular waxes on bloomless and sparse-bloom mutants of Sorghum bicolor. Jenks MA; Rich PJ; Rhodes D; Ashwort EN; Axtell JD; Din CK Phytochemistry; 2000 Jul; 54(6):577-84. PubMed ID: 10963450 [TBL] [Abstract][Full Text] [Related]
27. RAPD-based SCAR marker SCA 12 linked to recessive gene conferring resistance to anthracnose in sorghum [Sorghum bicolor (L.) Moench]. Singh M; Chaudhary K; Boora KS Theor Appl Genet; 2006 Dec; 114(1):187-92. PubMed ID: 17063339 [TBL] [Abstract][Full Text] [Related]
28. Combining Next Generation Sequencing with Bulked Segregant Analysis to Fine Map a Stem Moisture Locus in Sorghum (Sorghum bicolor L. Moench). Han Y; Lv P; Hou S; Li S; Ji G; Ma X; Du R; Liu G PLoS One; 2015; 10(5):e0127065. PubMed ID: 25984727 [TBL] [Abstract][Full Text] [Related]
29. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108 [TBL] [Abstract][Full Text] [Related]
30. Epicuticular wax accumulation and regulation of wax pathway gene expression during bioenergy Sorghum stem development. Chemelewski R; McKinley BA; Finlayson S; Mullet JE Front Plant Sci; 2023; 14():1227859. PubMed ID: 37936930 [TBL] [Abstract][Full Text] [Related]
31. Pathways and Network Based Analysis of Candidate Genes to Reveal Cross-Talk and Specificity in the Sorghum ( Woldesemayat AA; Ntwasa M Front Genet; 2018; 9():557. PubMed ID: 30515190 [TBL] [Abstract][Full Text] [Related]
32. Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population. Marla SR; Burow G; Chopra R; Hayes C; Olatoye MO; Felderhoff T; Hu Z; Raymundo R; Perumal R; Morris GP G3 (Bethesda); 2019 Dec; 9(12):4045-4057. PubMed ID: 31611346 [TBL] [Abstract][Full Text] [Related]
33. An ethyl methanesulfonate-induced neutral mutant-bridging method efficiently identifies spontaneously mutated genes in rice. Hu W; Zhou T; Hu G; Wu H; Han Z; Xiao J; Li X; Xing Y Plant J; 2020 Nov; 104(4):1129-1141. PubMed ID: 32808346 [TBL] [Abstract][Full Text] [Related]
34. BSAseq: an interactive and integrated web-based workflow for identification of causal mutations in bulked F2 populations. Wang L; Lu Z; Regulski M; Jiao Y; Chen J; Ware D; Xin Z Bioinformatics; 2021 Apr; 37(3):382-387. PubMed ID: 32777814 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959 [TBL] [Abstract][Full Text] [Related]
36. Mapping and Screening of Candidate Gene Regulating the Biomass Yield of Sorghum ( Li M; Cai Q; Liang Y; Zhao Y; Hao Y; Qin Y; Qiao X; Han Y; Li H Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255870 [TBL] [Abstract][Full Text] [Related]
37. Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum ( Ongom PO; Ejeta G G3 (Bethesda); 2018 Jan; 8(1):331-341. PubMed ID: 29150594 [TBL] [Abstract][Full Text] [Related]
38. Characterization of novel Sorghum brown midrib mutants from an EMS-mutagenized population. Sattler SE; Saballos A; Xin Z; Funnell-Harris DL; Vermerris W; Pedersen JF G3 (Bethesda); 2014 Sep; 4(11):2115-24. PubMed ID: 25187038 [TBL] [Abstract][Full Text] [Related]
39. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585 [TBL] [Abstract][Full Text] [Related]
40. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Blomstedt CK; O'Donnell NH; Bjarnholt N; Neale AD; Hamill JD; Møller BL; Gleadow RM Plant Cell Physiol; 2016 Feb; 57(2):373-86. PubMed ID: 26493517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]