These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29379641)

  • 1. Computational design of new molecular scaffolds for medicinal chemistry, part II: generalization of analog series-based scaffolds.
    Dimova D; Stumpfe D; Bajorath J
    Future Sci OA; 2018 Feb; 4(2):FSO267. PubMed ID: 29379641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collection of analog series-based scaffolds from public compound sources.
    Dimova D; Bajorath J
    Future Sci OA; 2018 Apr; 4(4):FSO287. PubMed ID: 29682322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry.
    Dimova D; Stumpfe D; Hu Y; Bajorath J
    Future Sci OA; 2016 Dec; 2(4):FSO149. PubMed ID: 28116132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Structural Relationships between Bioactive and Commercial Chemical Space and Developing Target Hypotheses for Compound Acquisition.
    Cerchia C; Dimova D; Lavecchia A; Bajorath J
    ACS Omega; 2017 Nov; 2(11):7760-7766. PubMed ID: 30023563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.
    Hu Y; Stumpfe D; Bajorath J
    J Med Chem; 2016 May; 59(9):4062-76. PubMed ID: 26840095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a New Scaffold Concept for Computational Target Deconvolution of Chemical Cancer Cell Line Screens.
    Kunimoto R; Dimova D; Bajorath J
    ACS Omega; 2017 Apr; 2(4):1463-1468. PubMed ID: 30023635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing the metacore concept for multi-target ligand design.
    Stumpfe D; Hoch A; Bajorath J
    RSC Med Chem; 2021 Apr; 12(4):628-635. PubMed ID: 34046634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Bioactive Scaffolds Based on QSAR Models.
    Nakagawa T; Miyao T; Funatsu K
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29135084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target family-directed exploration of scaffolds with different SAR profiles.
    Hu Y; Bajorath J
    J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic Extraction of Analogue Series from Large Compound Collections Using a New Computational Compound-Core Relationship Method.
    Naveja JJ; Vogt M; Stumpfe D; Medina-Franco JL; Bajorath J
    ACS Omega; 2019 Jan; 4(1):1027-1032. PubMed ID: 31459378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic identification of scaffolds representing compounds active against individual targets and single or multiple target families.
    Hu Y; Bajorath J
    J Chem Inf Model; 2013 Feb; 53(2):312-26. PubMed ID: 23339619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the utility of molecular scaffolds for medicinal and computational chemistry.
    Bajorath J
    Future Med Chem; 2018 Jul; 10(14):1645-1648. PubMed ID: 29957045
    [No Abstract]   [Full Text] [Related]  

  • 13. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?
    Dimova D; Bajorath J
    J Comput Aided Mol Des; 2017 Jul; 31(7):603-608. PubMed ID: 28623485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Method for the Systematic Identification of Analog Series and Key Compounds Representing Series and Their Biological Activity Profiles.
    Stumpfe D; Dimova D; Bajorath J
    J Med Chem; 2016 Aug; 59(16):7667-76. PubMed ID: 27501131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational method for the identification of third generation activity cliffs.
    Stumpfe D; Hu H; Bajorath J
    MethodsX; 2020; 7():100793. PubMed ID: 31993342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. R-group replacement database for medicinal chemistry.
    Takeuchi K; Kunimoto R; Bajorath J
    Future Sci OA; 2021 Sep; 7(8):FSO742. PubMed ID: 34295541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searchable database of frequent R-groups in medicinal chemistry and their preferred replacements.
    Takeuchi K; Kunimoto R; Bajorath J
    Data Brief; 2021 Dec; 39():107456. PubMed ID: 34692956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Identification of Analogue Series from Large Compound Data Sets: Methods and Applications.
    Naveja JJ; Vogt M
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Scaffold Diversity of Kinase Inhibitors Using Alternative Scaffold Concepts and Estimating the Scaffold Hopping Potential for Different Kinases.
    Dimova D; Bajorath J
    Molecules; 2017 May; 22(5):. PubMed ID: 28467353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.