These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 29380042)
1. Evaluation of Pterin, a Promising Drug Candidate from Cyanide Degrading Bacteria. Mahendran R; Thandeeswaran M; Kiran G; Arulkumar M; Ayub Nawaz KA; Jabastin J; Janani B; Anto Thomas T; Angayarkanni J Curr Microbiol; 2018 Jun; 75(6):684-693. PubMed ID: 29380042 [TBL] [Abstract][Full Text] [Related]
2. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651. Durairaju Nisshanthini S; Teresa Infanta S AK; Raja DS; Natarajan K; Palaniswamy M; Angayarkanni J J Microbiol; 2015 Apr; 53(4):262-71. PubMed ID: 25740375 [TBL] [Abstract][Full Text] [Related]
3. Analeptic agent from microbes upon cyanide degradation. Murugesan T; Durairaj N; Ramasamy M; Jayaraman K; Palaniswamy M; Jayaraman A Appl Microbiol Biotechnol; 2018 Feb; 102(4):1557-1565. PubMed ID: 29285551 [TBL] [Abstract][Full Text] [Related]
4. Microbial (Enzymatic) Degradation of Cyanide to Produce Pterins as Cofactors. Mahendran R; Bs S; Thandeeswaran M; kG K; Vijayasarathy M; Angayarkanni J; Muthusamy G Curr Microbiol; 2020 Apr; 77(4):578-587. PubMed ID: 31111225 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic assimilation of cyanide via pterin-dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764. Fernandez RF; Dolghih E; Kunz DA Appl Environ Microbiol; 2004 Jan; 70(1):121-8. PubMed ID: 14711633 [TBL] [Abstract][Full Text] [Related]
6. Comparative functioning of dihydro- and tetrahydropterins in supporting electron transfer, catalysis, and subunit dimerization in inducible nitric oxide synthase. Presta A; Siddhanta U; Wu C; Sennequier N; Huang L; Abu-Soud HM; Erzurum S; Stuehr DJ Biochemistry; 1998 Jan; 37(1):298-310. PubMed ID: 9425051 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of tyrosinase photoinduced by pterin. Laura Dántola M; Gojanovich AD; Thomas AH Biochem Biophys Res Commun; 2012 Aug; 424(3):568-72. PubMed ID: 22780950 [TBL] [Abstract][Full Text] [Related]
8. Pterin and folate salvage. Plants and Escherichia coli lack capacity to reduce oxidized pterins. Noiriel A; Naponelli V; Gregory JF; Hanson AD Plant Physiol; 2007 Mar; 143(3):1101-9. PubMed ID: 17220358 [TBL] [Abstract][Full Text] [Related]
9. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Picoli T; Peter CM; Zani JL; Waller SB; Lopes MG; Boesche KN; Vargas GDÁ; Hübner SO; Fischer G Microb Pathog; 2017 Nov; 112():57-62. PubMed ID: 28943153 [TBL] [Abstract][Full Text] [Related]
10. Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase. Kunz DA; Fernandez RF; Parab P Biochem Biophys Res Commun; 2001 Sep; 287(2):514-8. PubMed ID: 11554758 [TBL] [Abstract][Full Text] [Related]
11. Thymidine radical formation via one-electron transfer oxidation photoinduced by pterin: Mechanism and products characterization. Serrano MP; Vignoni M; Lorente C; Vicendo P; Oliveros E; Thomas AH Free Radic Biol Med; 2016 Jul; 96():418-31. PubMed ID: 27154982 [TBL] [Abstract][Full Text] [Related]
12. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia coli ATCC 10536 Produced by Bacillus pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia. S Alanazi A; Qureshi KA; Elhassan GO; I El-Agamy E Pak J Biol Sci; 2016; 19(5):191-201. PubMed ID: 29023023 [TBL] [Abstract][Full Text] [Related]
13. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Sriram MI; Kalishwaralal K; Deepak V; Gracerosepat R; Srisakthi K; Gurunathan S Colloids Surf B Biointerfaces; 2011 Jul; 85(2):174-81. PubMed ID: 21458961 [TBL] [Abstract][Full Text] [Related]