These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 29380541)

  • 1. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.
    Yang SJ; Qin XY; He R; Shen W; Li M; Zhao LB
    Phys Chem Chem Phys; 2017 May; 19(19):12480-12489. PubMed ID: 28470283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling.
    Park JH; Liu T; Kim KC; Lee SW; Jang SS
    ChemSusChem; 2017 Apr; 10(7):1584-1591. PubMed ID: 28199064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation.
    Wang Z; Li S; Zhang Y; Xu H
    Phys Chem Chem Phys; 2018 Mar; 20(11):7447-7456. PubMed ID: 29488988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries.
    Nam KW; Kim H; Beldjoudi Y; Kwon TW; Kim DJ; Stoddart JF
    J Am Chem Soc; 2020 Feb; 142(5):2541-2548. PubMed ID: 31895548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries.
    Lee DK; Go CY; Kim KC
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Electrochemical Properties of Organic Battery Cathode Materials: Insights from Evolutionary Algorithm DFT Calculations.
    Carvalho RP; Marchiori CFN; Brandell D; Araujo CM
    ChemSusChem; 2020 May; 13(9):2402-2409. PubMed ID: 32061037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonyl Bridge-Based p-π Conjugated Polymers as High-Performance Electrodes of Organic Lithium-Ion Batteries.
    Zu Y; Xu Y; Ma L; Kang Q; Yao H; Hou J
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18457-18464. PubMed ID: 32212633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-Principle Insights Into Molecular Design for High-Voltage Organic Electrode Materials for Mg Based Batteries.
    Lüder J; Manzhos S
    Front Chem; 2020; 8():83. PubMed ID: 32154214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene.
    Yu YX
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16267-75. PubMed ID: 25216389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dilution of the Electron Density in the π-Conjugated Skeleton of Organic Cathode Materials Improves the Discharge Voltage.
    Dai G; Gao Y; Niu Z; He P; Zhang X; Zhao Y; Zhou H
    ChemSusChem; 2020 May; 13(9):2264-2270. PubMed ID: 31953904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.