These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 29380571)
1. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae]. Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571 [TBL] [Abstract][Full Text] [Related]
2. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01. Xu JR; Zhao XQ; Liu CG; Bai FW Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658 [TBL] [Abstract][Full Text] [Related]
3. Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant Saccharomyces cerevisiae. Shen Y; Hou J; Bao X Bioengineered; 2013; 4(6):435-7. PubMed ID: 23812433 [TBL] [Abstract][Full Text] [Related]
5. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Vallier LG; Carlson M Genetics; 1994 May; 137(1):49-54. PubMed ID: 8056322 [TBL] [Abstract][Full Text] [Related]
6. Glucose de-repression by yeast AMP-activated protein kinase SNF1 is controlled via at least two independent steps. García-Salcedo R; Lubitz T; Beltran G; Elbing K; Tian Y; Frey S; Wolkenhauer O; Krantz M; Klipp E; Hohmann S FEBS J; 2014 Apr; 281(7):1901-17. PubMed ID: 24529170 [TBL] [Abstract][Full Text] [Related]
7. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae. Cao H; Yue M; Li S; Bai X; Zhao X; Du Y Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771 [TBL] [Abstract][Full Text] [Related]
8. Single-cell study links metabolism with nutrient signaling and reveals sources of variability. Welkenhuysen N; Borgqvist J; Backman M; Bendrioua L; Goksör M; Adiels CB; Cvijovic M; Hohmann S BMC Syst Biol; 2017 Jun; 11(1):59. PubMed ID: 28583118 [TBL] [Abstract][Full Text] [Related]
9. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. Papamichos-Chronakis M; Gligoris T; Tzamarias D EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717 [TBL] [Abstract][Full Text] [Related]
10. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Shen MH; Song H; Li BZ; Yuan YJ Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118 [TBL] [Abstract][Full Text] [Related]
11. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Treitel MA; Kuchin S; Carlson M Mol Cell Biol; 1998 Nov; 18(11):6273-80. PubMed ID: 9774644 [TBL] [Abstract][Full Text] [Related]
12. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. DeVit MJ; Johnston M Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086 [TBL] [Abstract][Full Text] [Related]
13. The multiple effects of REG1 deletion and SNF1 overexpression improved the production of S-adenosyl-L-methionine in Saccharomyces cerevisiae. Chen H; Chai X; Wang Y; Liu J; Zhou G; Wei P; Song Y; Ma L Microb Cell Fact; 2022 Aug; 21(1):174. PubMed ID: 36030199 [TBL] [Abstract][Full Text] [Related]
14. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms. Shashkova S; Wollman AJM; Leake MC; Hohmann S FEMS Microbiol Lett; 2017 Aug; 364(14):. PubMed ID: 28854669 [TBL] [Abstract][Full Text] [Related]
15. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1. Yao Y; Tsuchiyama S; Yang C; Bulteau AL; He C; Robison B; Tsuchiya M; Miller D; Briones V; Tar K; Potrero A; Friguet B; Kennedy BK; Schmidt M PLoS Genet; 2015 Jan; 11(1):e1004968. PubMed ID: 25629410 [TBL] [Abstract][Full Text] [Related]
16. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Zaragoza O; Vincent O; Gancedo JM Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983 [TBL] [Abstract][Full Text] [Related]
17. The role of Mig1, Mig2, Tup1 and Hap4 transcription factors in regulation of xylose and glucose fermentation in the thermotolerant yeast Ogataea polymorpha. Kurylenko O; Ruchala J; Kruk B; Vasylyshyn R; Szczepaniak J; Dmytruk K; Sibirny A FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33983391 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Schüller HJ Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202 [TBL] [Abstract][Full Text] [Related]
19. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Hua Y; Wang J; Zhu Y; Zhang B; Kong X; Li W; Wang D; Hong J Microb Cell Fact; 2019 Feb; 18(1):24. PubMed ID: 30709398 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional regulation of the protein kinase a subunits in Saccharomyces cerevisiae during fermentative growth. Galello F; Pautasso C; Reca S; Cañonero L; Portela P; Moreno S; Rossi S Yeast; 2017 Dec; 34(12):495-508. PubMed ID: 28812308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]