These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
458 related articles for article (PubMed ID: 29381052)
1. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach. Nowak S; Winter M Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes. Wei S; Choudhury S; Tu Z; Zhang K; Archer LA Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617 [TBL] [Abstract][Full Text] [Related]
3. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
5. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. Li W; Kim UH; Dolocan A; Sun YK; Manthiram A ACS Nano; 2017 Jun; 11(6):5853-5863. PubMed ID: 28502161 [TBL] [Abstract][Full Text] [Related]
6. Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries. Vissers DR; Chen Z; Shao Y; Engelhard M; Das U; Redfern P; Curtiss LA; Pan B; Liu J; Amine K ACS Appl Mater Interfaces; 2016 Jun; 8(22):14244-51. PubMed ID: 27152912 [TBL] [Abstract][Full Text] [Related]
7. Investigation of various layered lithium ion battery cathode materials by plasma- and X-ray-based element analytical techniques. Evertz M; Kasnatscheew J; Winter M; Nowak S Anal Bioanal Chem; 2019 Jan; 411(1):277-285. PubMed ID: 30374724 [TBL] [Abstract][Full Text] [Related]
8. Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries. Qian Y; Kang Y; Hu S; Shi Q; Chen Q; Tang X; Xiao Y; Zhao H; Luo G; Xu K; Deng Y ACS Appl Mater Interfaces; 2020 Mar; 12(9):10443-10451. PubMed ID: 32040291 [TBL] [Abstract][Full Text] [Related]
9. Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes. Langdon J; Manthiram A Adv Mater; 2022 Oct; 34(41):e2205188. PubMed ID: 35985644 [TBL] [Abstract][Full Text] [Related]
10. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Li W; Dolocan A; Oh P; Celio H; Park S; Cho J; Manthiram A Nat Commun; 2017 Apr; 8():14589. PubMed ID: 28443608 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte. Yu X; Bi Z; Zhao F; Manthiram A ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547 [TBL] [Abstract][Full Text] [Related]
12. Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life. Braga MH; M Subramaniyam C; Murchison AJ; Goodenough JB J Am Chem Soc; 2018 May; 140(20):6343-6352. PubMed ID: 29688709 [TBL] [Abstract][Full Text] [Related]
13. Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries. Liu H; Zhao X; Xie Y; Luo S; Wang Z; Zhu L; Zhang X ACS Appl Mater Interfaces; 2022 Dec; 14(50):55491-55502. PubMed ID: 36503239 [TBL] [Abstract][Full Text] [Related]
14. High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte. Sun H; Zhu G; Zhu Y; Lin MC; Chen H; Li YY; Hung WH; Zhou B; Wang X; Bai Y; Gu M; Huang CL; Tai HC; Xu X; Angell M; Shyue JJ; Dai H Adv Mater; 2020 Jul; 32(26):e2001741. PubMed ID: 32449260 [TBL] [Abstract][Full Text] [Related]
15. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
16. Speciation of Transition Metal Dissolution in Electrolyte from Common Cathode Materials. Rynearson L; Antolini C; Jayawardana C; Yeddala M; Hayes D; Lucht BL Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202317109. PubMed ID: 38078892 [TBL] [Abstract][Full Text] [Related]
17. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
18. Studies on the deposition of copper in lithium-ion batteries during the deep discharge process. Langner T; Sieber T; Acker J Sci Rep; 2021 Mar; 11(1):6316. PubMed ID: 33737549 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous Stabilization of LiNi Zhao W; Zou L; Zheng J; Jia H; Song J; Engelhard MH; Wang C; Xu W; Yang Y; Zhang JG ChemSusChem; 2018 Jul; 11(13):2211-2220. PubMed ID: 29717541 [TBL] [Abstract][Full Text] [Related]
20. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]