These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29381083)

  • 21. Remote Raman measurements of minerals, organics, and inorganics at 430  m range.
    Acosta-Maeda TE; Misra AK; Muzangwa LG; Berlanga G; Muchow D; Porter J; Sharma SK
    Appl Opt; 2016 Dec; 55(36):10283-10289. PubMed ID: 28059247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Broadband, high-resolution spatial heterodyne Raman spectroscopy measurement based on a multi-Littrow-angle multi-grating.
    Chu Q; Sun Y; Sun C; Shuo Y; Jirigalantu ; Li X; Li F; Bayanheshig
    Opt Express; 2023 Sep; 31(19):31284-31299. PubMed ID: 37710651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial Heterodyne Offset Raman Spectroscopy Enabling Rapid, High Sensitivity Characterization of Materials' Interfaces.
    Cui H; Glidle A; Cooper JM
    Small; 2021 Jun; 17(24):e2101114. PubMed ID: 34013665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved Raman spectroscopy for in situ planetary mineralogy.
    Blacksberg J; Rossman GR; Gleckler A
    Appl Opt; 2010 Sep; 49(26):4951-62. PubMed ID: 20830184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.
    Blacksberg J; Alerstam E; Maruyama Y; Cochrane CJ; Rossman GR
    Appl Opt; 2016 Feb; 55(4):739-48. PubMed ID: 26836075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterodyne Fourier transform spectrometer for the near- infrared region.
    Hirai A; Matsumoto H; Lin D; Tagaki C
    Opt Express; 2003 Jun; 11(11):1258-64. PubMed ID: 19465992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.
    Gornushkin IB; Smith BW; Panne U; Omenetto N
    Appl Spectrosc; 2014; 68(9):1076-84. PubMed ID: 25226262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Remote Raman System and Its Applications for Planetary Material Studies.
    Qu H; Ling Z; Qi X; Xin Y; Liu C; Cao H
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Miniature high-speed, low-pulse-energy picosecond Raman spectrometer for identification of minerals and organics in planetary science.
    Blacksberg J; Alerstam E; Cochrane CJ; Maruyama Y; Farmer JD
    Appl Opt; 2020 Jan; 59(2):433-444. PubMed ID: 32225324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New trends in telescopic remote Raman spectroscopic instrumentation.
    Sharma SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1008-22. PubMed ID: 17723317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of microplastics based on splicing grating spatial heterodyne Raman spectroscopy.
    Yang H; Xue Q; Lu F; Ma J; Dong Y; Yu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124499. PubMed ID: 38788505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a high-resolution, broadband spatial heterodyne Raman spectrometer based on field-widened grating-echelle structure.
    Chu Q; Li F; Li X; Sun C; Sun Y; Jirigalantu ; Song N; Yu S; Zhang R; Bayanheshig
    Opt Express; 2024 May; 32(10):17819-17836. PubMed ID: 38858953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep-Ultraviolet Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).
    Lamsal N; Angel SM
    Appl Spectrosc; 2015 May; 69(5):525-34. PubMed ID: 25811967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detecting Minerals and Organics Relevant to Planetary Exploration Using a Compact Portable Remote Raman System at 122 Meters.
    Sandford MW; Misra AK; Acosta-Maeda TE; Sharma SK; Porter JN; Egan MJ; Abedin MN
    Appl Spectrosc; 2021 Mar; 75(3):299-306. PubMed ID: 32613858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman efficiencies of natural rocks and minerals: performance of a remote Raman system for planetary exploration at a distance of 10 meters.
    Stopar JD; Lucey PG; Sharma SK; Misra AK; Taylor GJ; Hubble HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2315-23. PubMed ID: 16029852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remote pulsed Raman spectroscopy of inorganic and organic materials to a radial distance of 100 meters.
    Sharma SK; Misra AK; Lucey PG; Angel SM; McKay CP
    Appl Spectrosc; 2006 Aug; 60(8):871-6. PubMed ID: 16925922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Sagnac Fourier spectrometer.
    Lenzner M; Diels JC
    Opt Express; 2017 Apr; 25(8):A447-A453. PubMed ID: 28437914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives.
    Zachhuber B; Ramer G; Hobro A; Chrysostom ET; Lendl B
    Anal Bioanal Chem; 2011 Jun; 400(8):2439-47. PubMed ID: 21336938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband, high-resolution Raman observations from a double-echelle spatial heterodyne Raman spectrometer.
    Qiu J; Qi X; Li X; Xu W; Tang Y; Ma Z; Bayanheshig
    Appl Opt; 2018 Oct; 57(30):8936-8941. PubMed ID: 30461879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.