These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 29381092)

  • 1. Absorption Spectra of Ethanol and Water Using a Photothermal Lens Spectrophotometer.
    Cabrera H; Akbar J; Korte D; Ashraf I; Ramírez-Miquet EE; Marín E; Niemela J
    Appl Spectrosc; 2018 Jul; 72(7):1069-1073. PubMed ID: 29381092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.
    Marcano A; Alvarado S; Meng J; Caballero D; Moares EM; Edziah R
    Appl Spectrosc; 2014; 68(6):680-5. PubMed ID: 25014724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photothermal Determination of Absorption and Scattering Spectra of Silver Nanoparticles.
    Marcano Olaizola A
    Appl Spectrosc; 2018 Feb; 72(2):234-240. PubMed ID: 29065695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optical Configuration of Crossed-Beam Photothermal Lens Spectrometer Operating at High Flow Velocities and Its Application for Cysteine Determination in Human Serum and Saliva.
    Yoosefian J; Alizadeh N
    Anal Chem; 2018 Jul; 90(13):8227-8233. PubMed ID: 29869876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry.
    Cabrera H; Goljat L; Korte D; Marín E; Franko M
    Anal Chim Acta; 2020 Mar; 1100():182-190. PubMed ID: 31987139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Differential Thermal Lens Spectrometry Method for Trace Detection.
    Cedeño E; Zuleta R; Mejorada Sánchez JL; Alvarado S; Marín E
    Appl Spectrosc; 2024 Jun; 78(6):644-649. PubMed ID: 38378011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry.
    Cruz RA; Filadelpho MC; Castro MP; Andrade AA; Souza CM; Catunda T
    Talanta; 2011 Aug; 85(2):850-8. PubMed ID: 21726709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption spectra of dye solutions measured using a white light thermal lens spectrophotometer.
    Marcano O A; Ojeda J; Melikechi N
    Appl Spectrosc; 2006 May; 60(5):560-3. PubMed ID: 16756708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the thermal lens signal induced by sample matrix absorption of the probe laser beam.
    Grishko VI; Tran CD; Duley WW
    Appl Opt; 2002 Sep; 41(27):5814-22. PubMed ID: 12269581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High sensitivity thermal lens microscopy: Cr-VI trace detection in water.
    Cedeño E; Cabrera H; Delgadillo-López AE; Delgado-Vasallo O; Mansanares AM; Calderón A; Marín E
    Talanta; 2017 Aug; 170():260-265. PubMed ID: 28501168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.
    Abbas Ghaleb K; Georges J
    Appl Spectrosc; 2006 Jan; 60(1):86-8. PubMed ID: 16454917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide.
    Ventura M; Silva JR; Andrade LHC; Scorza Júnior RP; Lima SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():32-36. PubMed ID: 28689076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual detection of single-nanometer-sized particles in liquid by photothermal microscope.
    Mawatari K; Kitamori T; Sawada T
    Anal Chem; 1998 Dec; 70(23):5037-41. PubMed ID: 21644684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials.
    Astrath NG; Astrath FB; Shen J; Zhou J; Pedreira PR; Malacarne LC; Bento AC; Baesso ML
    Opt Lett; 2008 Jul; 33(13):1464-6. PubMed ID: 18594666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the absorption uniformity of optical thin films based on the photothermal detuning technique.
    Hao H; Zhou A; Rao M
    Appl Opt; 2012 Oct; 51(28):6844-7. PubMed ID: 23033101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low cost short wave near infrared spectrophotometer: application for determination of quality parameters of diesel fuel.
    Gonzaga FB; Pasquini C
    Anal Chim Acta; 2010 Jun; 670(1-2):92-7. PubMed ID: 20685422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advantages and limitations of thermal lens spectrometry over conventional spectrophotometry for absorbance measurements.
    Georges J
    Talanta; 1999 Mar; 48(3):501-9. PubMed ID: 18967490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.