These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 29381100)
1. Multiwavelength Raman Spectroscopic Analysis of Superficial Iron-Chromium Oxides Generated Using Laser Irradiation. Ortiz-Morales M; Soto-Bernal JJ; Frausto-Reyes C; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I Appl Spectrosc; 2018 Jun; 72(6):879-885. PubMed ID: 29381100 [TBL] [Abstract][Full Text] [Related]
2. Raman spectroscopic analysis of iron chromium oxide microspheres generated by nanosecond pulsed laser irradiation on stainless steel. Ortiz-Morales M; Soto-Bernal JJ; Frausto-Reyes C; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():505-510. PubMed ID: 25797225 [TBL] [Abstract][Full Text] [Related]
3. Infrared nanosecond pulsed laser irradiation of stainless steel: micro iron-oxide zones generation. Ortiz-Morales M; Frausto-Reyes C; Soto-Bernal JJ; Acosta-Ortiz SE; Gonzalez-Mota R; Rosales-Candelas I Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():681-5. PubMed ID: 24699286 [TBL] [Abstract][Full Text] [Related]
4. [NIR-SERS Spectra Detection of Cytidine on Nano-Silver Films]. Zhang DQ; Liu RM; Zhang GQ; Zhang Y; Xiong Y; Zhang CY; Li L; Si MZ Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):743-8. PubMed ID: 27400517 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba. Reddy BJ; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1721-8. PubMed ID: 15863040 [TBL] [Abstract][Full Text] [Related]
6. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures. Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937 [TBL] [Abstract][Full Text] [Related]
7. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation. Sato H; Chiba H; Tashiro H; Ozaki Y J Biomed Opt; 2001 Jul; 6(3):366-70. PubMed ID: 11516329 [TBL] [Abstract][Full Text] [Related]
8. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources. István K; Keresztury G; Szép A Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jun; 59(8):1709-23. PubMed ID: 12736057 [TBL] [Abstract][Full Text] [Related]
9. Raman spectroscopic evaluation of human serum using metal plate and 785- and 1064-nm excitation lasers. Ito H; Uragami N; Miyazaki T; Yokoyama N; Inoue H PLoS One; 2019; 14(2):e0211986. PubMed ID: 30768643 [TBL] [Abstract][Full Text] [Related]
10. Deep UV resonant Raman spectroscopy for photodamage characterization in cells. Kumamoto Y; Taguchi A; Smith NI; Kawata S Biomed Opt Express; 2011 Mar; 2(4):927-36. PubMed ID: 21483614 [TBL] [Abstract][Full Text] [Related]
11. Raman spectroelectrochemical study of poly(N-methylaniline) at UV, blue, red, and NIR laser line excitations in solutions of different pH. Mažeikienė R; Niaura G; Malinauskas A Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jun; 274():121109. PubMed ID: 35286889 [TBL] [Abstract][Full Text] [Related]
12. On the structure of vanadium oxide supported on aluminas: UV and visible raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies. Wu Z; Kim HS; Stair PC; Rugmini S; Jackson SD J Phys Chem B; 2005 Feb; 109(7):2793-800. PubMed ID: 16851289 [TBL] [Abstract][Full Text] [Related]
13. Label-free diagnostics and cancer surgery Raman spectra guidance for the human colon at different excitation wavelengths. Brozek-Pluska B; Miazek K; Musiał J; Kordek R RSC Adv; 2019 Dec; 9(69):40445-40454. PubMed ID: 35542639 [TBL] [Abstract][Full Text] [Related]
14. Laser Wavelength Dependence of Background Fluorescence in Raman Spectroscopic Analysis of Synovial Fluid from Symptomatic Joints. Yang S; Li B; Slipchenko MN; Akkus A; Singer NG; Yeni YN; Akkus O J Raman Spectrosc; 2013 Aug; 44(8):1089-1095. PubMed ID: 24058259 [TBL] [Abstract][Full Text] [Related]
15. Complementary analysis of tissue homogenates composition obtained by Vis and NIR laser excitations and Raman spectroscopy. Staniszewska-Slezak E; Malek K; Baranska M Spectrochim Acta A Mol Biomol Spectrosc; 2015 Aug; 147():245-56. PubMed ID: 25847786 [TBL] [Abstract][Full Text] [Related]
16. Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts. Tian H; Wachs IE; Briand LE J Phys Chem B; 2005 Dec; 109(49):23491-9. PubMed ID: 16375323 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic Characterization of Emulsions Generated with a New Laser-Assisted Device. Dinache A; Tozar T; Smarandache A; Andrei IR; Nistorescu S; Nastasa V; Staicu A; Pascu ML; Romanitan MO Molecules; 2020 Apr; 25(7):. PubMed ID: 32283754 [TBL] [Abstract][Full Text] [Related]
18. Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis. Beattie JR; Brockbank S; McGarvey JJ; Curry WJ Mol Vis; 2005 Sep; 11():825-32. PubMed ID: 16254551 [TBL] [Abstract][Full Text] [Related]
19. Study of redox and protonation processes of polyaniline by the differential multiwavelength Raman spectroelectrochemistry. Mažeikienė R; Niaura G; Malinauskas A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117147. PubMed ID: 31141757 [TBL] [Abstract][Full Text] [Related]
20. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]